Skip to main content

2017 | OriginalPaper | Buchkapitel

On the Electronic Realizations of Fractional-Order Phase-Lead-Lag Compensators with OpAmps and FPAAs

verfasst von : Carlos Muñiz-Montero, Luis A. Sánchez-Gaspariano, Carlos Sánchez-López, Víctor R. González-Díaz, Esteban Tlelo-Cuautle

Erschienen in: Fractional Order Control and Synchronization of Chaotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is well known that the fractional-order phase-lead-lag compensators can achieve control objectives that are not always possible by using their integer-order counterparts. However, up to now one can find only a few of publications discussing the strategies for parameters’ tuning of these compensators, with only simulation results reported. This is due in part to the implicit difficulties on the implementation of circuit elements with frequency responses of the form \(s^{\pm \lambda }\) that are named “fractances”. In this regard, there exist approximations with rational functions, but the drawback is the difficulty to approximate the required values with the ones of the commercially-available resistances and capacitors. Consequently, fractional compensators have not been appreciated by the industry as it is in the academia. Therefore, motivated by the lack of reported implementations, this chapter is structured as a tutorial that deals with the key factors to perform, with the frequency-domain approach, the design, simulation and implementation of integer-order and fractional-order phase-lead-lag compensators. The circuit implementations are performed with Operational Amplifiers (OpAmps) and with Field Programmable Analog Arrays (FPAA). Emphasis is focused in the obtaining of commercially-available values of resistances and capacitors. Therefore, the design procedure starts with the use of equations that provide the exact and unique solution for each parameter of the compensator, avoiding conventional trial-and-error procedures. Then, five OpAmp-based configurations for integer-order and fractional-order realizations are described in terms of basic analog building blocks, such as integrators or differential amplifiers, among others. The corresponding design equations are also provided. Then, six examples are presented for both, OpAmp-based and FPAA-based implementations with the simulation and experimental results discussed regarding other results reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Angel, L., & Viola, J. (2015). Design and statistical robustness analysis of FOPID, IOPID and SIMC PID controllers applied to a motor-generator system. IEEE Latin America Transactions, 13(12), 3724–3734. doi:10.1109/TLA.2015.7404900.CrossRef Angel, L., & Viola, J. (2015). Design and statistical robustness analysis of FOPID, IOPID and SIMC PID controllers applied to a motor-generator system. IEEE Latin America Transactions, 13(12), 3724–3734. doi:10.​1109/​TLA.​2015.​7404900.CrossRef
3.
Zurück zum Zitat Antoniou, A. (1972). Floating negative-impedance converters. IEEE Transactions on Circuit Theory, 19(2), 209–212.CrossRef Antoniou, A. (1972). Floating negative-impedance converters. IEEE Transactions on Circuit Theory, 19(2), 209–212.CrossRef
4.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. doi:10.1007/s00521-014-1560-x.CrossRef Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. doi:10.​1007/​s00521-014-1560-x.CrossRef
5.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu, A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Germany: Springer. doi:10.1007/978-3-319-12883-21. Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu, A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Germany: Springer. doi:10.​1007/​978-3-319-12883-21.
6.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI loop shaping. International Journal of System Dynamics Applications, 5(3), 20–47.CrossRef Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI loop shaping. International Journal of System Dynamics Applications, 5(3), 20–47.CrossRef
7.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design (Vol. 581). Studies in computational intelligence. Germany: Springer. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design (Vol. 581). Studies in computational intelligence. Germany: Springer.
8.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control (Vol. 575). Studies in computational intelligence. Germany: Springer. ISBN 978-3-319-11016-5. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control (Vol. 575). Studies in computational intelligence. Germany: Springer. ISBN 978-3-319-11016-5.
9.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR) book series. USA: IGI Global. ISBN 978-1-466-67248-2. Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR) book series. USA: IGI Global. ISBN 978-1-466-67248-2.
10.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing. Germany: Springer. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing. Germany: Springer.
11.
Zurück zum Zitat Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 802–806. doi:10.1109/TCSII.2006.879102.CrossRef Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 802–806. doi:10.​1109/​TCSII.​2006.​879102.CrossRef
12.
Zurück zum Zitat Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in chaos theory and intelligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer.
13.
Zurück zum Zitat Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control (Vol. 337). Studies in fuzziness and soft computing. Germany: Springer.
14.
Zurück zum Zitat Cao, J., Liang, J., & Cao, B. (2005). Optimization of fractional order PID controllers based on genetic algorithms. In 2005 International Conference on Machine Learning and Cybernetics (Vol. 9, pp. 5686–5689). doi:10.1109/ICMLC.2005.1527950. Cao, J., Liang, J., & Cao, B. (2005). Optimization of fractional order PID controllers based on genetic algorithms. In 2005 International Conference on Machine Learning and Cybernetics (Vol. 9, pp. 5686–5689). doi:10.​1109/​ICMLC.​2005.​1527950.
15.
Zurück zum Zitat Charef, A. (2006). Analogue realization of fractional-order integrator, differentiator and fractional \(PI^\lambda D^\mu \) controller. IEE Proceedings—Control Theory and Applications, 153(6), 714–720.CrossRef Charef, A. (2006). Analogue realization of fractional-order integrator, differentiator and fractional \(PI^\lambda D^\mu \) controller. IEE Proceedings—Control Theory and Applications, 153(6), 714–720.CrossRef
17.
Zurück zum Zitat Deepak, V. D., & Kumari, U. S. (2014). Modified method of tuning for fractional PID controllers. In 2014 International Conference on Power Signals Control and Computations, EPSCICON 2014 (pp. 8–10). doi:10.1109/EPSCICON.2014.6887481. Deepak, V. D., & Kumari, U. S. (2014). Modified method of tuning for fractional PID controllers. In 2014 International Conference on Power Signals Control and Computations, EPSCICON 2014 (pp. 8–10). doi:10.​1109/​EPSCICON.​2014.​6887481.
18.
19.
Zurück zum Zitat Dorcák, L., Terpák, J., Petrá, I., Valsa, J., & González, E. (2012). Comparison of the electronic realization of the fractional-order system and its model. In Carpathian Control Conference (ICCC), 2012 13th International (pp. 119–124). doi:10.1109/CarpathianCC.2012.6228627. Dorcák, L., Terpák, J., Petrá, I., Valsa, J., & González, E. (2012). Comparison of the electronic realization of the fractional-order system and its model. In Carpathian Control Conference (ICCC), 2012 13th International (pp. 119–124). doi:10.​1109/​CarpathianCC.​2012.​6228627.
20.
Zurück zum Zitat Herrmann, R. (2011). Fractional calculus (1st ed.). World Scientific publishing Co. Herrmann, R. (2011). Fractional calculus (1st ed.). World Scientific publishing Co.
21.
Zurück zum Zitat Jesus, I. S., & Tenreiro, J. A. (2009). Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 56(1–2), 45–55. doi:10.1007/s11071-008-9377-8. Jesus, I. S., & Tenreiro, J. A. (2009). Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 56(1–2), 45–55. doi:10.​1007/​s11071-008-9377-8.
22.
Zurück zum Zitat Khubalkar, S., Chopade, A., Junghare, A., Aware, M., & Das, S. (2016). Design and realization of stand-alone digital fractional order PID controller for buck converter fed DC motor. Circuits, Systems, and Signal Processing, 35(6), 2189–2211. doi:10.1007/s00034-016-0262-2. Khubalkar, S., Chopade, A., Junghare, A., Aware, M., & Das, S. (2016). Design and realization of stand-alone digital fractional order PID controller for buck converter fed DC motor. Circuits, Systems, and Signal Processing, 35(6), 2189–2211. doi:10.​1007/​s00034-016-0262-2.
24.
Zurück zum Zitat Lachhab, N., Svaricek, F., Wobbe, F., & Rabba, H. (2013). Fractional order PID controller (FOPID)-toolbox. In Control Conference (ECC), 2013 European (pp. 3694–3699). Lachhab, N., Svaricek, F., Wobbe, F., & Rabba, H. (2013). Fractional order PID controller (FOPID)-toolbox. In Control Conference (ECC), 2013 European (pp. 3694–3699).
25.
Zurück zum Zitat Ltifi, A., Ghariani, M., & Neji, R. (2013). Performance comparison on three parameter determination method of fractional PID controllers. In 2013 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 453–460). doi:10.1109/STA.2013.6783171. Ltifi, A., Ghariani, M., & Neji, R. (2013). Performance comparison on three parameter determination method of fractional PID controllers. In 2013 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 453–460). doi:10.​1109/​STA.​2013.​6783171.
26.
Zurück zum Zitat Mahmood, A. K., & Saleh, S. A. R. (2015). Realization of fractional order differentiator by analogue electronic circuit. International Journal of Advances in Engineering and Technology, 1, 1939–1951. Mahmood, A. K., & Saleh, S. A. R. (2015). Realization of fractional order differentiator by analogue electronic circuit. International Journal of Advances in Engineering and Technology, 1, 1939–1951.
27.
Zurück zum Zitat Marzaki, M. H., Rahiman, M. H. F., Adnan, R., & Tajjudin, M. (2015). Real time performance comparison between PID and fractional order PID controller in SMISD plant. In 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC) (pp. 141–145). doi:10.1109/ICSGRC.2015.7412481. Marzaki, M. H., Rahiman, M. H. F., Adnan, R., & Tajjudin, M. (2015). Real time performance comparison between PID and fractional order PID controller in SMISD plant. In 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC) (pp. 141–145). doi:10.​1109/​ICSGRC.​2015.​7412481.
28.
Zurück zum Zitat Mehta, S., & Jain, M. (2015). Comparative analysis of different fractional PID tuning methods for the first order system. In 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE) (pp. 640–646). doi:10.1109/ABLAZE.2015.7154942. Mehta, S., & Jain, M. (2015). Comparative analysis of different fractional PID tuning methods for the first order system. In 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE) (pp. 640–646). doi:10.​1109/​ABLAZE.​2015.​7154942.
29.
Zurück zum Zitat Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and controls, fundamentals and applications (1st ed.). Advances in industrial control. Springer. Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and controls, fundamentals and applications (1st ed.). Advances in industrial control. Springer.
30.
Zurück zum Zitat Nise, N. S. (2011). Control systems engineering (6th ed.). Wiley. ISBN 978-0-470-91373-4. Nise, N. S. (2011). Control systems engineering (6th ed.). Wiley. ISBN 978-0-470-91373-4.
31.
Zurück zum Zitat Ou, B., Song, L., & Chang, C. (2010). Tuning of fractional PID controllers by using radial basis function neural networks. In 2010 8th IEEE International Conference on Control and Automation (ICCA) (pp. 1239–1244). doi:10.1109/ICCA.2010.5524367. Ou, B., Song, L., & Chang, C. (2010). Tuning of fractional PID controllers by using radial basis function neural networks. In 2010 8th IEEE International Conference on Control and Automation (ICCA) (pp. 1239–1244). doi:10.​1109/​ICCA.​2010.​5524367.
33.
Zurück zum Zitat Podlubny, I., Petras, I., Vinagre, B. M., O’Leary, P., & Dorcak, L. (2002). Analogue realizations of fractional-order controllers. Nonlinear Dynamics, 29(1), 281–296.MathSciNetCrossRefMATH Podlubny, I., Petras, I., Vinagre, B. M., O’Leary, P., & Dorcak, L. (2002). Analogue realizations of fractional-order controllers. Nonlinear Dynamics, 29(1), 281–296.MathSciNetCrossRefMATH
35.
Zurück zum Zitat Tavazoei, M. S., & Tavakoli-Kakhki, M. (2014). Compensation by fractional-order phase-lead/lag compensators. IET Control Theory and Applications, 8(5), 319–329. doi:10.1049/iet-cta.2013.0138. Tavazoei, M. S., & Tavakoli-Kakhki, M. (2014). Compensation by fractional-order phase-lead/lag compensators. IET Control Theory and Applications, 8(5), 319–329. doi:10.​1049/​iet-cta.​2013.​0138.
36.
Zurück zum Zitat Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. In Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference (pp. 684–689). Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. In Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference (pp. 684–689).
37.
Zurück zum Zitat Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. In Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems—MIXDES 2011 (Vol. 4, pp. 684–689). Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. In Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems—MIXDES 2011 (Vol. 4, pp. 684–689).
38.
Zurück zum Zitat Tepljakov, A., Petlenkov, E., & Belikov, J. (2012). A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In Control Conference (CCC), 2012 31st Chinese (pp. 4698–4703). Tepljakov, A., Petlenkov, E., & Belikov, J. (2012). A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In Control Conference (CCC), 2012 31st Chinese (pp. 4698–4703).
41.
Zurück zum Zitat Valerio, D., & Da Costa, J. S. (2006). Tuning-rules for fractional PID controllers. In Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications FDA06, Porto, Portugal. Valerio, D., & Da Costa, J. S. (2006). Tuning-rules for fractional PID controllers. In Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications FDA06, Porto, Portugal.
42.
Zurück zum Zitat Valerio, D., & Da Costa, J. S. (2010). A review of tuning methods for fractional PIDs. In Preprints, IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain. Valerio, D., & Da Costa, J. S. (2010). A review of tuning methods for fractional PIDs. In Preprints, IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain.
43.
Zurück zum Zitat Varshney, P., & Gupta, S. K. (2014). Implementation of fractional Fuzzy PID controllers for control of fractional-order systems. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014 (pp. 1322–1328). doi:10.1109/ICACCI.2014.6968376. Varshney, P., & Gupta, S. K. (2014). Implementation of fractional Fuzzy PID controllers for control of fractional-order systems. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014 (pp. 1322–1328). doi:10.​1109/​ICACCI.​2014.​6968376.
45.
Zurück zum Zitat Xue, D., Liu, L., & Pan, F. (2015). Variable-order fuzzy fractional PID controllers for networked control systems. In 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1438–1442). doi:10.1109/ICIEA.2015.7334333. Xue, D., Liu, L., & Pan, F. (2015). Variable-order fuzzy fractional PID controllers for networked control systems. In 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1438–1442). doi:10.​1109/​ICIEA.​2015.​7334333.
46.
Zurück zum Zitat Zhong, J., & Li, L. (2015). Tuning fractional-order \(PI^\lambda D^\mu \) controllers for a solid-core magnetic bearing system. IEEE Transactions on Control Systems Technology, 23(4), 1648–1656.CrossRef Zhong, J., & Li, L. (2015). Tuning fractional-order \(PI^\lambda D^\mu \) controllers for a solid-core magnetic bearing system. IEEE Transactions on Control Systems Technology, 23(4), 1648–1656.CrossRef
47.
Zurück zum Zitat Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. In Studies in fuzziness and soft computing (Vol. 319). Germany: Springer. ISBN 978-3-319-12882-5. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. In Studies in fuzziness and soft computing (Vol. 319). Germany: Springer. ISBN 978-3-319-12882-5.
Metadaten
Titel
On the Electronic Realizations of Fractional-Order Phase-Lead-Lag Compensators with OpAmps and FPAAs
verfasst von
Carlos Muñiz-Montero
Luis A. Sánchez-Gaspariano
Carlos Sánchez-López
Víctor R. González-Díaz
Esteban Tlelo-Cuautle
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_5