Skip to main content
Erschienen in:

12.07.2020 | Original Paper

On the existence and non-existence of some classes of bent–negabent functions

verfasst von: Bimal Mandal, Subhamoy Maitra, Pantelimon Stănică

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we investigate different questions related to bent–negabent functions. We first take an expository look at the state-of-the-art research in this domain and point out some technical flaws in certain results and fix some of them. Further, we derive a necessary and sufficient condition for which the functions of the form \({\mathbf{x}}\cdot \pi ({\mathbf{y}})\oplus h({\mathbf{y}})\) [Maiorana–McFarland (\({\mathcal {M}}\))] is bent–negabent, and more generally, we study the non-existence of bent–negabent functions in the \({\mathcal {M}}\) class. We also identify some functions that are bent–negabent. Next, we continue the recent work by Mandal et al. (Discrete Appl Math 236:1–6, 2018) on rotation symmetric bent–negabent functions and show their non-existence in larger classes. For example, we prove that there is no rotation symmetric bent–negabent function in \(4p^k\) variables, where p is an odd prime. We present the non-existence of such functions in certain classes that are affine transformations of rotation symmetric functions. Keeping in mind the existing literature, we correct here some technical issues and errors found in other papers and provide some novel results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S., Siang, M., Todo, Y.: GIFT: a small present towards reaching the limit of lightweight encryption. In: CHES 2017. LNCS, vol. 10529, pp. 321–345 (2017) Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S., Siang, M., Todo, Y.: GIFT: a small present towards reaching the limit of lightweight encryption. In: CHES 2017. LNCS, vol. 10529, pp. 321–345 (2017)
2.
3.
Zurück zum Zitat Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press, Cambridge (2010)MATH Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press, Cambridge (2010)MATH
4.
Zurück zum Zitat Carlet, C.: On the secondary constructions of resilient and bent functions. Coding Cryptogr. Comb. 23, 3–28 (2004)MathSciNetMATH Carlet, C.: On the secondary constructions of resilient and bent functions. Coding Cryptogr. Comb. 23, 3–28 (2004)MathSciNetMATH
5.
Zurück zum Zitat Carlet, C., Mesnager, S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016)MathSciNetCrossRef Carlet, C., Mesnager, S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016)MathSciNetCrossRef
6.
Zurück zum Zitat Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd edn. Academic Press, San Diego (2017)MATH Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd edn. Academic Press, San Diego (2017)MATH
7.
Zurück zum Zitat Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric bent functions. Disc Math. 309(8), 2398–2409 (2009)MathSciNetCrossRef Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric bent functions. Disc Math. 309(8), 2398–2409 (2009)MathSciNetCrossRef
8.
Zurück zum Zitat Dillon, J.F.: A survey of bent functions. NSA Tech. J. NSAL-S-203(92), 191–215 (1972) (Special Issue) Dillon, J.F.: A survey of bent functions. NSA Tech. J. NSAL-S-203(92), 191–215 (1972) (Special Issue)
9.
Zurück zum Zitat Kavut, S., Maitra, S., Yücel, M.D.: Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743–1751 (2007)MathSciNetCrossRef Kavut, S., Maitra, S., Yücel, M.D.: Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743–1751 (2007)MathSciNetCrossRef
10.
Zurück zum Zitat McFarland, R.L.: A family of noncyclic difference sets. J. Comb. Theory Ser. A 15, 1–10 (1973)CrossRef McFarland, R.L.: A family of noncyclic difference sets. J. Comb. Theory Ser. A 15, 1–10 (1973)CrossRef
11.
Zurück zum Zitat Mandal, B., Singh, B., Gangopadhyay, S., Maitra, S., Vetrivel, V.: On non-existence of bent–negabent rotation symmetric Boolean functions. Discrete Appl. Math. 236, 1–6 (2018)MathSciNetCrossRef Mandal, B., Singh, B., Gangopadhyay, S., Maitra, S., Vetrivel, V.: On non-existence of bent–negabent rotation symmetric Boolean functions. Discrete Appl. Math. 236, 1–6 (2018)MathSciNetCrossRef
12.
Zurück zum Zitat Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014)MathSciNetCrossRef Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat Mesnager, S.: Bent Functions—Fundamentals and Results, pp. 1–544. Springer, Bern (2016). ISBN 978-3-319-32593-4 Mesnager, S.: Bent Functions—Fundamentals and Results, pp. 1–544. Springer, Bern (2016). ISBN 978-3-319-32593-4
15.
Zurück zum Zitat Parker, M.G., Pott, A.: On Boolean functions which are bent and negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.Y. (eds.) Sequences, Subsequences, and Consequences, SSC 2007 LNCS, vol. 4893, pp. 9–23 (2007) Parker, M.G., Pott, A.: On Boolean functions which are bent and negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.Y. (eds.) Sequences, Subsequences, and Consequences, SSC 2007 LNCS, vol. 4893, pp. 9–23 (2007)
16.
Zurück zum Zitat Pieprzyk, J., Qu, C.X.: Fast hashing and rotation-symmetric functions. J. Univ. Comput. Sci. 5(1), 20–31 (1999)MathSciNet Pieprzyk, J., Qu, C.X.: Fast hashing and rotation-symmetric functions. J. Univ. Comput. Sci. 5(1), 20–31 (1999)MathSciNet
17.
Zurück zum Zitat Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976)CrossRef Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976)CrossRef
18.
Zurück zum Zitat Riera, C., Parker, M.G.: Generalized bent criteria for Boolean functions. IEEE Trans. Inf. Theory 52(9), 4142–4159 (2006)MathSciNetCrossRef Riera, C., Parker, M.G.: Generalized bent criteria for Boolean functions. IEEE Trans. Inf. Theory 52(9), 4142–4159 (2006)MathSciNetCrossRef
19.
Zurück zum Zitat Schmidt, K.-U., Parker, M.G., Pott, A.: Negabent functions in Maiorana–McFarland class. In: SETA, LNCS 2008, vol. 5203, pp. 390–402 (2008) Schmidt, K.-U., Parker, M.G., Pott, A.: Negabent functions in Maiorana–McFarland class. In: SETA, LNCS 2008, vol. 5203, pp. 390–402 (2008)
20.
Zurück zum Zitat Sarkar, S.: Characterizing negabent Boolean functions over finite fields. In: Proceedings of SETA 2012, LNCS, vol. 7280, pp. 77–88 (2012) Sarkar, S.: Characterizing negabent Boolean functions over finite fields. In: Proceedings of SETA 2012, LNCS, vol. 7280, pp. 77–88 (2012)
21.
Zurück zum Zitat Sarkar, S., Cusick, T.W.: Initial results on the rotation symmetric bent–negabent functions. In: 7th International Workshop on Signal Design and Applications in Communications (IWSDA), pp. 80–84 (2015) Sarkar, S., Cusick, T.W.: Initial results on the rotation symmetric bent–negabent functions. In: 7th International Workshop on Signal Design and Applications in Communications (IWSDA), pp. 80–84 (2015)
22.
Zurück zum Zitat Stănică, P., Gangopadhyay, S., Chaturvedi, A., Kar Gangopadhyay, A., Maitra, S.: Investigations on bent and negabent functions via the nega–Hadamard transform. IEEE Trans. Inf. Theory 58(6), 4064–4072 (2012)MathSciNetCrossRef Stănică, P., Gangopadhyay, S., Chaturvedi, A., Kar Gangopadhyay, A., Maitra, S.: Investigations on bent and negabent functions via the nega–Hadamard transform. IEEE Trans. Inf. Theory 58(6), 4064–4072 (2012)MathSciNetCrossRef
23.
Zurück zum Zitat Stănică, P., Maitra, S.: Rotation symmetric Boolean functions—count and cryptographic properties. Discrete Appl. Math. 156, 1567–1580 (2008)MathSciNetCrossRef Stănică, P., Maitra, S.: Rotation symmetric Boolean functions—count and cryptographic properties. Discrete Appl. Math. 156, 1567–1580 (2008)MathSciNetCrossRef
24.
Zurück zum Zitat Stănică, P., Mandal, B., Maitra, S.: The connection between quadratic bent–negabent functions and the Kerdock code. Appl. Algebra Eng. Commun. Comput. 30(5), 387–401 (2019)MathSciNetCrossRef Stănică, P., Mandal, B., Maitra, S.: The connection between quadratic bent–negabent functions and the Kerdock code. Appl. Algebra Eng. Commun. Comput. 30(5), 387–401 (2019)MathSciNetCrossRef
25.
Zurück zum Zitat Su, W., Pott, A., Tang, X.: Characterization of negabent functions and construction of bent–negabent functions with maximum algebraic degree. IEEE Trans. Inf. Theory 59(6), 3387–3395 (2013)MathSciNetCrossRef Su, W., Pott, A., Tang, X.: Characterization of negabent functions and construction of bent–negabent functions with maximum algebraic degree. IEEE Trans. Inf. Theory 59(6), 3387–3395 (2013)MathSciNetCrossRef
26.
Zurück zum Zitat Xia, T., Seberry, J., Pieprzyk, J., Charnes, C.: Homogeneous bent functions of degree \(n\) in \(2n\) variables do not exist for \(n > 3\). Discrete Appl. Math. 142(1–3), 127–132 (2004)MathSciNetCrossRef Xia, T., Seberry, J., Pieprzyk, J., Charnes, C.: Homogeneous bent functions of degree \(n\) in \(2n\) variables do not exist for \(n > 3\). Discrete Appl. Math. 142(1–3), 127–132 (2004)MathSciNetCrossRef
27.
Zurück zum Zitat Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015)MathSciNetCrossRef Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015)MathSciNetCrossRef
Metadaten
Titel
On the existence and non-existence of some classes of bent–negabent functions
verfasst von
Bimal Mandal
Subhamoy Maitra
Pantelimon Stănică
Publikationsdatum
12.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 3/2022
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00444-w

Weitere Artikel der Ausgabe 3/2022

Applicable Algebra in Engineering, Communication and Computing 3/2022 Zur Ausgabe

Premium Partner