Skip to main content
Erschienen in:

27.12.2022 | Technical Article

On the Fidelity of the Scaling Laws for Melt Pool Depth Analysis During Laser Powder Bed Fusion

verfasst von: M. Naderi, J. Weaver, D. Deisenroth, N. Iyyer, R. McCauley

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In additive manufacturing, the part quality is highly dependent on process parameters. The morphology of the melt pool (depth and width) is highly affected by process parameter selection. Available scaling laws more or less overestimate or underestimate melt pool dimensions with the similar order of magnitudes in the errors. Depending on melt pool mode, either conduction or keyhole, and moving from one material to another, scaling laws might not perform well. To further analyze the performance of the available scaling laws, in this work, melt pool depth obtained from experiments is tested against three well-known scaling laws. The fidelity and error associated with the scaling laws are analyzed and discussed. To improve the accuracy of the prediction, we revised three scaling laws and the results are discussed. While in some cases the scaling laws might have reasonable errors roughly lower than 50%, in other cases, errors are very high signifying missing physics from the predictions. The revised version of the scaling laws improves the fidelity of the predictions. The analysis shows a careful attention is required when using scaling laws to avoid high percentage of error.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
 
Literatur
1.
Zurück zum Zitat Bourell D, Coholich J, Chalancon A, Bhat A (2017) Evaluation of energy density measures and validation for powder bed fusion of polyamide. CIRP Ann 66(1):217–220CrossRef Bourell D, Coholich J, Chalancon A, Bhat A (2017) Evaluation of energy density measures and validation for powder bed fusion of polyamide. CIRP Ann 66(1):217–220CrossRef
2.
Zurück zum Zitat Mukherjee T, Manvatkar V, De A, DebRoy T (2017) Dimensionless numbers in additive manufacturing. J Appl Phys 121(6):064904CrossRef Mukherjee T, Manvatkar V, De A, DebRoy T (2017) Dimensionless numbers in additive manufacturing. J Appl Phys 121(6):064904CrossRef
3.
Zurück zum Zitat Wang L, Wei QS, Shi YS, Liu JH, He WT (2011) Experimental investigation into the single-track of selective laser melting of IN625. In: Advanced materials research, vol 233, pp 2844–2848. Trans Tech Publ Wang L, Wei QS, Shi YS, Liu JH, He WT (2011) Experimental investigation into the single-track of selective laser melting of IN625. In: Advanced materials research, vol 233, pp 2844–2848. Trans Tech Publ
4.
Zurück zum Zitat Ciurana J, Hernandez L, Delgado J (2013) Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int J Adv Manuf Technol 68(5):1103–1110CrossRef Ciurana J, Hernandez L, Delgado J (2013) Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int J Adv Manuf Technol 68(5):1103–1110CrossRef
5.
Zurück zum Zitat Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping J Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping J
6.
Zurück zum Zitat Bertoli US, Wolfer AJ, Matthews MJ, Delplanque J-PR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340CrossRef Bertoli US, Wolfer AJ, Matthews MJ, Delplanque J-PR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340CrossRef
7.
Zurück zum Zitat Weaver JS, Heigel JC, Lane BM (2022) Laser spot size and scaling laws for laser beam additive manufacturing. J Manuf Process 73:26–39CrossRef Weaver JS, Heigel JC, Lane BM (2022) Laser spot size and scaling laws for laser beam additive manufacturing. J Manuf Process 73:26–39CrossRef
8.
Zurück zum Zitat Hann DB, Iammi J, Folkes J (2011) A simple methodology for predicting laser-weld properties from material and laser parameters. J Phys D Appl Phys 44(44):445401CrossRef Hann DB, Iammi J, Folkes J (2011) A simple methodology for predicting laser-weld properties from material and laser parameters. J Phys D Appl Phys 44(44):445401CrossRef
9.
Zurück zum Zitat King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, Kamath C, Rubenchik AM (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214(12):2915–2925CrossRef King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, Kamath C, Rubenchik AM (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214(12):2915–2925CrossRef
10.
Zurück zum Zitat Hanemann T, Seyfert C, Holfelder P, Rota A, Heilmaier M (2020) Dimensionless enthalpy as characteristic factor for process control in laser powder bed fusion. J Laser Micro Nanoeng 15(3):257–266 Hanemann T, Seyfert C, Holfelder P, Rota A, Heilmaier M (2020) Dimensionless enthalpy as characteristic factor for process control in laser powder bed fusion. J Laser Micro Nanoeng 15(3):257–266
11.
Zurück zum Zitat Rubenchik AM, King WE, Wu SS (2018) Scaling laws for the additive manufacturing. J Mater Process Technol 257:234–243CrossRef Rubenchik AM, King WE, Wu SS (2018) Scaling laws for the additive manufacturing. J Mater Process Technol 257:234–243CrossRef
12.
Zurück zum Zitat Fabbro R (2019) Scaling laws for the laser welding process in keyhole mode. J Mater Process Technol 264:346–351CrossRef Fabbro R (2019) Scaling laws for the laser welding process in keyhole mode. J Mater Process Technol 264:346–351CrossRef
13.
Zurück zum Zitat Ye J, Khairallah SA, Rubenchik AM, Crumb MF, Guss G, Belak J, Matthews MJ (2019) Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing. Adv Eng Mater 21(7):1900185CrossRef Ye J, Khairallah SA, Rubenchik AM, Crumb MF, Guss G, Belak J, Matthews MJ (2019) Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing. Adv Eng Mater 21(7):1900185CrossRef
14.
Zurück zum Zitat Eagar TW, Tsai NS et al (1983) Temperature fields produced by traveling distributed heat sources. Weld J 62(12):346–355 Eagar TW, Tsai NS et al (1983) Temperature fields produced by traveling distributed heat sources. Weld J 62(12):346–355
15.
Zurück zum Zitat Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4(4):345CrossRef Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4(4):345CrossRef
16.
Zurück zum Zitat Grossmann A, Felger J, Froelich T, Gosmann J, Mittelstedt C (2019) Melt pool controlled laser powder bed fusion for customised low-density lattice structures. Mater Des 181:108054CrossRef Grossmann A, Felger J, Froelich T, Gosmann J, Mittelstedt C (2019) Melt pool controlled laser powder bed fusion for customised low-density lattice structures. Mater Des 181:108054CrossRef
17.
Zurück zum Zitat Großmann A, Mölleney J, Frölich T, Merschroth H, Felger J, Weigold M, Sielaff A, Mittelstedt C (2020) Dimensionless process development for lattice structure design in laser powder bed fusion. Mater Des 194:108952CrossRef Großmann A, Mölleney J, Frölich T, Merschroth H, Felger J, Weigold M, Sielaff A, Mittelstedt C (2020) Dimensionless process development for lattice structure design in laser powder bed fusion. Mater Des 194:108952CrossRef
18.
Zurück zum Zitat Yang Y, Großmann A, Kühn P, Mölleney J, Kropholler L, Mittelstedt C, Bai-Xiang X (2022) Validated dimensionless scaling law for melt pool width in laser powder bed fusion. J Mater Process Technol 299:117316CrossRef Yang Y, Großmann A, Kühn P, Mölleney J, Kropholler L, Mittelstedt C, Bai-Xiang X (2022) Validated dimensionless scaling law for melt pool width in laser powder bed fusion. J Mater Process Technol 299:117316CrossRef
19.
Zurück zum Zitat Gan Z, Kafka OL, Parab N, Zhao C, Fang L, Heinonen O, Sun T, Liu WK (2021) Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat Commun 12(1):1–8CrossRef Gan Z, Kafka OL, Parab N, Zhao C, Fang L, Heinonen O, Sun T, Liu WK (2021) Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat Commun 12(1):1–8CrossRef
20.
Zurück zum Zitat Coen V, Goossens L, Van Hooreweder B (2022) Methodology and experimental validation of analytical melt pool models for laser powder bed fusion. J Mater Process Technol, p 117547 Coen V, Goossens L, Van Hooreweder B (2022) Methodology and experimental validation of analytical melt pool models for laser powder bed fusion. J Mater Process Technol, p 117547
21.
Zurück zum Zitat Simonds BJ, Tanner J, Artusio-Glimpse A, Williams PA, Parab N, Zhao C, Sun T (2021) The causal relationship between melt pool geometry and energy absorption measured in real time during laser-based manufacturing. Appl Mater Today 23:101049CrossRef Simonds BJ, Tanner J, Artusio-Glimpse A, Williams PA, Parab N, Zhao C, Sun T (2021) The causal relationship between melt pool geometry and energy absorption measured in real time during laser-based manufacturing. Appl Mater Today 23:101049CrossRef
22.
Zurück zum Zitat Wang Z, Liu M (2019) Dimensionless analysis on selective laser melting to predict porosity and track morphology. J Mater Process Technol 273:116238CrossRef Wang Z, Liu M (2019) Dimensionless analysis on selective laser melting to predict porosity and track morphology. J Mater Process Technol 273:116238CrossRef
23.
Zurück zum Zitat Goossens LR, Van Hooreweder B (2021) A virtual sensing approach for monitoring melt-pool dimensions using high speed coaxial imaging during laser powder bed fusion of metals. Addit Manuf 40:101923 Goossens LR, Van Hooreweder B (2021) A virtual sensing approach for monitoring melt-pool dimensions using high speed coaxial imaging during laser powder bed fusion of metals. Addit Manuf 40:101923
24.
Zurück zum Zitat Liu B, Fang G, Lei L (2021) An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM). Appl Math Model 92:505–524CrossRef Liu B, Fang G, Lei L (2021) An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM). Appl Math Model 92:505–524CrossRef
25.
Zurück zum Zitat Rankouhi B, Agrawal AK, Pfefferkorn FE, Thoma DJ (2021) A dimensionless number for predicting universal processing parameter boundaries in metal powder bed additive manufacturing. Manuf Lett 27:13–17CrossRef Rankouhi B, Agrawal AK, Pfefferkorn FE, Thoma DJ (2021) A dimensionless number for predicting universal processing parameter boundaries in metal powder bed additive manufacturing. Manuf Lett 27:13–17CrossRef
26.
Zurück zum Zitat Agrawal AK, Rankouhi B, Thoma DJ (2022) Predictive process mapping for laser powder bed fusion: a review of existing analytical solutions. Curr Opin Solid State Mater Sci 26(6):101024CrossRef Agrawal AK, Rankouhi B, Thoma DJ (2022) Predictive process mapping for laser powder bed fusion: a review of existing analytical solutions. Curr Opin Solid State Mater Sci 26(6):101024CrossRef
27.
Zurück zum Zitat Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40(18):5753CrossRef Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40(18):5753CrossRef
28.
Zurück zum Zitat Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349CrossRef Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349CrossRef
29.
Zurück zum Zitat Simonds BJ, Sowards J, Hadler J, Pfeif E, Wilthan B, Tanner J, Harris C, Williams P, Lehman J (2018) Time-resolved absorptance and melt pool dynamics during intense laser irradiation of a metal. Phys Rev Appl 10(4):044061CrossRef Simonds BJ, Sowards J, Hadler J, Pfeif E, Wilthan B, Tanner J, Harris C, Williams P, Lehman J (2018) Time-resolved absorptance and melt pool dynamics during intense laser irradiation of a metal. Phys Rev Appl 10(4):044061CrossRef
30.
Zurück zum Zitat Deisenroth DC, Mekhontsev S, Lane B (2020) Measurement of mass loss, absorbed energy, and time-resolved reflected power for laser powder bed fusion. 11271:112710L Deisenroth DC, Mekhontsev S, Lane B (2020) Measurement of mass loss, absorbed energy, and time-resolved reflected power for laser powder bed fusion. 11271:112710L
31.
Zurück zum Zitat Lane B, Mekhontsev S, Grantham S, Vlasea ML, Whiting J, Yeung H, Fox J, Zarobila C, Neira J, McGlauflin M (2016) Design, developments, and results from the NIST additive manufacturing metrology testbed (AMMT). In: 2016 International solid freeform fabrication symposium. University of Texas at Austin Lane B, Mekhontsev S, Grantham S, Vlasea ML, Whiting J, Yeung H, Fox J, Zarobila C, Neira J, McGlauflin M (2016) Design, developments, and results from the NIST additive manufacturing metrology testbed (AMMT). In: 2016 International solid freeform fabrication symposium. University of Texas at Austin
32.
Zurück zum Zitat Lane B, Heigel J, Ricker R, Zhirnov I, Khromschenko V, Weaver J, Phan T, Stoudt M, Mekhontsev S, Levine L (2020) Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Integr Mater Manuf Innov 9(1):16–30CrossRef Lane B, Heigel J, Ricker R, Zhirnov I, Khromschenko V, Weaver J, Phan T, Stoudt M, Mekhontsev S, Levine L (2020) Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Integr Mater Manuf Innov 9(1):16–30CrossRef
33.
Zurück zum Zitat Shrestha S, Chou K (2021) A study of transient and steady-state regions from single-track deposition in laser powder bed fusion. J Manuf Process 61:226–235CrossRef Shrestha S, Chou K (2021) A study of transient and steady-state regions from single-track deposition in laser powder bed fusion. J Manuf Process 61:226–235CrossRef
Metadaten
Titel
On the Fidelity of the Scaling Laws for Melt Pool Depth Analysis During Laser Powder Bed Fusion
verfasst von
M. Naderi
J. Weaver
D. Deisenroth
N. Iyyer
R. McCauley
Publikationsdatum
27.12.2022
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 1/2023
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-022-00289-w

Weitere Artikel der Ausgabe 1/2023

Integrating Materials and Manufacturing Innovation 1/2023 Zur Ausgabe

Thematic Section: First World Congress on Artificial Intelligence in Materials Manufacturing 2022

Parameters, Properties, and Process: Conditional Neural Generation of Realistic SEM Imagery Toward ML-Assisted Advanced Manufacturing

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.