Skip to main content

2012 | OriginalPaper | Buchkapitel

On the geometry of the diffeomorphism group of the circle

verfasst von : Adrian Constantin, Boris Kolev

Erschienen in: Number Theory, Analysis and Geometry

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss some of the possibilities of endowing the diffeomorphism group of the circle with Riemannian structures arising from right-invariant metrics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A is symmetric if (Au, v) = (Av, u) for all \(u,v \in{\mathfrak{g}}^{{_\ast}}\), where the round brackets stand for the pairing of elements of the dual spaces \(\mathfrak{g}\) and \({\mathfrak{g}}^{{_\ast}}\).
 
2
Notice that geodesics issuing from some g 0 ∈ G are obtained via left translation by g 0 from geodesics issuing from e.
 
3
The coadjoint action of G on \({\mathfrak{g}}^{{_\ast}}\) is defined by \(({\mathrm{Ad}}_{g}^{{_\ast}}\,m,u) = (m,{\mathrm{Ad}}_{{g}^{-1}}\,u)\).
 
4
The strong version does not require ω to be an exact form. It only assumes that ω is G-invariant and that the symplectic group action of G on M has a moment map.
 
5
It is defined by \((\mathrm{{ad}}_{\omega }^{{_\ast}}\,m,u) = -(m,\mathrm{{ ad}}_{\omega }\,u)\).
 
6
A topological vector space E has a canonical uniform structure. When this structure is complete and when the topology of E may be given by a countable family of semi-norms, we say that E is a Fréchet vector space. In a Fréchet space, such classical results like the Cauchy–Lipschitz theorem or the local inverse theorem are no longer valid in general as they are in on Banach manifold. the typical example of a Fréchet space is the space of smooth functions on a compact manifold where semi-norms are just the C k -norms (\(k = 0, 1,\ldots \)).
 
7
That is, for all \(u,v \in \mathrm{{C}}^{\infty }({\mathbb{S}}^{1})\), \(\mathrm{Supp}(u) \cap \mathrm{Supp}(v) = \varnothing \Rightarrow \mathbf{a}(u,v) = 0\).
 
8
Indeed, this map is not locally surjective. Otherwise, every diffeomorphism sufficiently near to the identity (for the C topology) would have a square root. However one can build (see [19]) diffeomorphisms arbitrary near to the identity which have exactly 1 periodic orbit of period 2n. But the number of periodic orbits of even periods of the square of a diffeomorphism is always even. Therefore, such a diffeomorphism cannot have a square root.
 
9
If \(\mathfrak{g}\) is the Lie algebra of a Lie group G, this structure corresponds to the reduction of the canonical symplectic structure on T  ∗  G by the left action of G on T  ∗  G.
 
10
A special case occurs when this cocycle γ is a coboundary i.e. γ(u, v) = m 0([u, v]) for some \({m}_{0} \in{\mathfrak{g}}^{{_\ast}}\) (freezing structure).
 
11
By Gel’fand, Dorfman, Magri. See the review [23].
 
12
The composition in the Virasoro group \(\mathrm{Vir} = \mathrm{Diff}({\mathbb{S}}^{1}) \times\mathbb{R}\) is given by
$$\begin{array}{rcl} (\phi ,\alpha ) \circ(\psi ,\beta ) = \Big{(}\phi\circ\psi ,\alpha+ \beta+ B(\phi ,\psi )\Big{)}& & \\ \end{array}$$
where
$$\begin{array}{rcl} B(\phi ,\psi ) = -\frac{1} {2}{ \int\nolimits \nolimits }_{0}^{1}\log {(\phi (\psi (x)))}_{x}\;d\log {\psi }_{x}(x)& & \\ \end{array}$$
is the Bott cocycle.
 
Literatur
1.
Zurück zum Zitat Adams RA, Sobolev spaces, Academic Press, 1975. Adams RA, Sobolev spaces, Academic Press, 1975.
2.
Zurück zum Zitat Arnold VI, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319–361. Arnold VI, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319–361.
3.
Zurück zum Zitat Arnold VI and Khesin BA, Topological methods in hydrodynamics, Springer-Verlag, New York, 1998.MATH Arnold VI and Khesin BA, Topological methods in hydrodynamics, Springer-Verlag, New York, 1998.MATH
4.
Zurück zum Zitat Constantin A and Kolev B, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35(2002), R51–R79. Constantin A and Kolev B, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35(2002), R51–R79.
5.
Zurück zum Zitat Constantin A and Kolev B, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), 787–804. Constantin A and Kolev B, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), 787–804.
6.
Zurück zum Zitat Constantin A and Kolev B, Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109–122. Constantin A and Kolev B, Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109–122.
7.
Zurück zum Zitat Constantin A, Kolev B and Lenells J, Integrability of invariant metrics on the Virasoro group, Phys. Lett. A 350 (2006), 75–80. Constantin A, Kolev B and Lenells J, Integrability of invariant metrics on the Virasoro group, Phys. Lett. A 350 (2006), 75–80.
8.
Zurück zum Zitat Constantin A, Kappeler T, Kolev B, and Topalov P, On geodesic exponential maps of the Virasoro group, Ann. Glob. Anal. Geom., 31 (2007), 155–180.MathSciNetMATHCrossRef Constantin A, Kappeler T, Kolev B, and Topalov P, On geodesic exponential maps of the Virasoro group, Ann. Glob. Anal. Geom., 31 (2007), 155–180.MathSciNetMATHCrossRef
9.
Zurück zum Zitat Constantin A and McKean HP, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949–982. Constantin A and McKean HP, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949–982.
10.
Zurück zum Zitat Ebin DG and Marsden J, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. 92 (1970), 102–163. Ebin DG and Marsden J, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. 92 (1970), 102–163.
11.
Zurück zum Zitat Euler L, Theoria motus corporum solidorum seu rigidorum ex primiis nostrae cognitionis principiis stabilita et ad onmes motus qui inhuiusmodi corpora cadere possunt accomodata, Mémoires de l’Académie des Sciences Berlin (1765). Euler L, Theoria motus corporum solidorum seu rigidorum ex primiis nostrae cognitionis principiis stabilita et ad onmes motus qui inhuiusmodi corpora cadere possunt accomodata, Mémoires de l’Académie des Sciences Berlin (1765).
12.
Zurück zum Zitat Hamilton R, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 66–222. Hamilton R, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 66–222.
13.
Zurück zum Zitat Khesin B and Misiolek G, Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176 (2003), no. 1, 116–144. Khesin B and Misiolek G, Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176 (2003), no. 1, 116–144.
14.
Zurück zum Zitat Khesin B and Ovsienko V, The super Korteweg-de Vries equation as an Euler equation. Functional Anal. Appl. 21 (1988), no. 4, 329–331. Khesin B and Ovsienko V, The super Korteweg-de Vries equation as an Euler equation. Functional Anal. Appl. 21 (1988), no. 4, 329–331.
15.
Zurück zum Zitat Kolev B, Lie groups and mechanics: an introduction, J. Nonlinear Math. Phys. 11 (2004), 480–498. Kolev B, Lie groups and mechanics: an introduction, J. Nonlinear Math. Phys. 11 (2004), 480–498.
16.
Zurück zum Zitat Kolev B, Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations, Phil. Trans. Roy. Soc. London, 365 (2007), 2333–2357.MathSciNetMATHCrossRef Kolev B, Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations, Phil. Trans. Roy. Soc. London, 365 (2007), 2333–2357.MathSciNetMATHCrossRef
17.
Zurück zum Zitat Kouranbaeva S, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys. 40 (1999), 857–868. Kouranbaeva S, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys. 40 (1999), 857–868.
18.
19.
Zurück zum Zitat Milnor J, Remarks on infinite-dimensional Lie groups, in Relativity, Groups and Topology, pp. 1009–1057, (1984), North-Holland, Amsterdam. Milnor J, Remarks on infinite-dimensional Lie groups, in Relativity, Groups and Topology, pp. 1009–1057, (1984), North-Holland, Amsterdam.
20.
Zurück zum Zitat Misiołek G, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys. 24 (1998), 203–208. Misiołek G, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys. 24 (1998), 203–208.
21.
Zurück zum Zitat Ovsienko V and Roger C, Looped cotangent Virasoro algebra and non-linear integrable systems in dimension 2+1, Comm. Math. Phys. 273 (2007), 357–378. Ovsienko V and Roger C, Looped cotangent Virasoro algebra and non-linear integrable systems in dimension 2+1, Comm. Math. Phys. 273 (2007), 357–378.
22.
Zurück zum Zitat Peetre J, Une caractérisation abstraite des opérateurs différentiels, Math. Scand. 7 (1959), 211–218. Peetre J, Une caractérisation abstraite des opérateurs différentiels, Math. Scand. 7 (1959), 211–218.
23.
Zurück zum Zitat Praught J and Smirnov RG, Andrew Lenard: a mystery unraveled, SIGMA 1 (2005), 7pp. Praught J and Smirnov RG, Andrew Lenard: a mystery unraveled, SIGMA 1 (2005), 7pp.
24.
Zurück zum Zitat Souriau JM, Structure of Dynamical Systems Birkhäuser, Boston, 1997.MATH Souriau JM, Structure of Dynamical Systems Birkhäuser, Boston, 1997.MATH
25.
Metadaten
Titel
On the geometry of the diffeomorphism group of the circle
verfasst von
Adrian Constantin
Boris Kolev
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1260-1_7