Skip to main content

2021 | OriginalPaper | Buchkapitel

35. On the Interplay Between Ecology and Reliability

verfasst von : Ali Muhammad Ali Rushdi, Ahmad Kamal Hassan

Erschienen in: Handbook of Advanced Performability Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter attempts to enhance the interplay between the ecology and reliability fields by employing Boolean-based reliability language and techniques to quantify ecological metrics related to connectivity and redundancy. We emphasize the question of connectivity in models of probabilistic networks as a common area of interest for both fields. The chapter borrows techniques from mainstream reliability theory to treat a prominent problem of ecology, namely that of survivability (of a species), defined here as the probability of successful migration of a certain organism escaping from critical source habitat patches and seeking refuge in specific destination habitat patches via heterogeneous deletable ecological corridors, possibly with uninhabitable stepping stones en route. This problem might be reformulated in contexts other than that of migration, including those of (a) dynamics of metapopulations, colonization, or invasion, (b) gene flow, (c) spread of infectious diseases, epidemics, or pandemics, and (d) energy transfer within food webs. Indicators of network connectivity in classical reliability theory are probabilities that might be designated according to the set of source nodes and the set of destination nodes as one to one, one to many, many to many, or all to all. Our present notion of survivability (of a species) is also a probability of connectivity, now measured from any node (among many nodes) to any node (among many nodes). We explore methods for computing the survivability (of a species) by adapting switching-algebraic techniques that are usually employed in the reliability field. In addition to this survivability metric, we comment on some other connectivity indicators that are currently used in ecology. We stress two recent contributions to the ecology literature, one employing analogy with electric circuit theory, and another concerning the most reliable (or minimum-lag) dispersal paths.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fahrig, L., & Merriam, G. (1985). Habitat patch connectivity and population survival: Ecological archives E066-008. Ecology, 66(6), 1762–1768.CrossRef Fahrig, L., & Merriam, G. (1985). Habitat patch connectivity and population survival: Ecological archives E066-008. Ecology, 66(6), 1762–1768.CrossRef
2.
Zurück zum Zitat Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 1(68), 571–573.CrossRef Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 1(68), 571–573.CrossRef
3.
Zurück zum Zitat With, K. A., & King, A. W. (1997). The use and misuse of neutral landscape models in ecology. Oikos, 79(2), 219–229.CrossRef With, K. A., & King, A. W. (1997). The use and misuse of neutral landscape models in ecology. Oikos, 79(2), 219–229.CrossRef
4.
Zurück zum Zitat Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7–19.CrossRef Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7–19.CrossRef
5.
Zurück zum Zitat Tischendorf, L., & Fahrig, L. (2000). How should we measure landscape connectivity? Landscape Ecology, 15(7), 633–641.CrossRef Tischendorf, L., & Fahrig, L. (2000). How should we measure landscape connectivity? Landscape Ecology, 15(7), 633–641.CrossRef
6.
Zurück zum Zitat Moilanen, A., & Hanski, I. (2001). On the use of connectivity measures in spatial ecology. Oikos, 95(1), 147–151.CrossRef Moilanen, A., & Hanski, I. (2001). On the use of connectivity measures in spatial ecology. Oikos, 95(1), 147–151.CrossRef
7.
Zurück zum Zitat Moilanen, A., & Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83(4), 1131–1145.CrossRef Moilanen, A., & Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83(4), 1131–1145.CrossRef
8.
Zurück zum Zitat Brooks, C. P. (2003). A scalar analysis of landscape connectivity. Oikos, 102(2), 433–439.CrossRef Brooks, C. P. (2003). A scalar analysis of landscape connectivity. Oikos, 102(2), 433–439.CrossRef
9.
Zurück zum Zitat Jordán, F. (2003). Quantifying landscape connectivity: Key patches and key corridors. WIT Transactions on Ecology and the Environment, 28(64), 883–891. Jordán, F. (2003). Quantifying landscape connectivity: Key patches and key corridors. WIT Transactions on Ecology and the Environment, 28(64), 883–891.
10.
Zurück zum Zitat Pe’er, G., Heinz, S. K., & Frank, K. (2006). Connectivity in heterogeneous landscapes: Analyzing the effect of topography. Landscape Ecology, 21(1), 47–61.CrossRef Pe’er, G., Heinz, S. K., & Frank, K. (2006). Connectivity in heterogeneous landscapes: Analyzing the effect of topography. Landscape Ecology, 21(1), 47–61.CrossRef
11.
Zurück zum Zitat Pascual-Hortal, L., & Saura, S. (2006). Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landscape Ecology, 21(7), 959–967.CrossRef Pascual-Hortal, L., & Saura, S. (2006). Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landscape Ecology, 21(7), 959–967.CrossRef
12.
Zurück zum Zitat Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2–3), 91–103.CrossRef Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2–3), 91–103.CrossRef
13.
Zurück zum Zitat Kindlmann, P., & Burel, F. (2008). Connectivity measures: A review. Landscape Ecology, 23(8), 879–890. Kindlmann, P., & Burel, F. (2008). Connectivity measures: A review. Landscape Ecology, 23(8), 879–890.
14.
Zurück zum Zitat Minor, E. S., & Urban, D. L. (2008). A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology, 22(2), 297–307.CrossRef Minor, E. S., & Urban, D. L. (2008). A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology, 22(2), 297–307.CrossRef
15.
Zurück zum Zitat Luque, S., Saura, S., & Fortin, M. J. (2012). Landscape connectivity analysis for conservation: Insights from combining new methods with ecological and genetic data. Landscape Ecology, 27(2), 153–157.CrossRef Luque, S., Saura, S., & Fortin, M. J. (2012). Landscape connectivity analysis for conservation: Insights from combining new methods with ecological and genetic data. Landscape Ecology, 27(2), 153–157.CrossRef
16.
Zurück zum Zitat Hock, K., & Mumby, P. J. (2015). Quantifying the reliability of dispersal paths in connectivity networks. Journal of the Royal Society, Interface, 12(105), 20150013.CrossRef Hock, K., & Mumby, P. J. (2015). Quantifying the reliability of dispersal paths in connectivity networks. Journal of the Royal Society, Interface, 12(105), 20150013.CrossRef
17.
Zurück zum Zitat Zhang, Z., Meerow, S., Newell, J. P., & Lindquist, M. (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry and Urban Greening, 1(38), 305–317.CrossRef Zhang, Z., Meerow, S., Newell, J. P., & Lindquist, M. (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry and Urban Greening, 1(38), 305–317.CrossRef
18.
Zurück zum Zitat McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712–2724.CrossRef McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712–2724.CrossRef
19.
Zurück zum Zitat Rushdi, A. M., & Hassan, A. K. (2015). Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecological Modelling, 24(304), 1–10.CrossRef Rushdi, A. M., & Hassan, A. K. (2015). Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecological Modelling, 24(304), 1–10.CrossRef
20.
Zurück zum Zitat Rushdi, A. M., & Hassan, A. K. (2016). An exposition of system reliability analysis with an ecological perspective. Ecological Indicators, 1(63), 282–295.CrossRef Rushdi, A. M., & Hassan, A. K. (2016). An exposition of system reliability analysis with an ecological perspective. Ecological Indicators, 1(63), 282–295.CrossRef
21.
Zurück zum Zitat Rushdi, A. M. (2016). Quantification of uncertainty in the reliability of migration between habitat patches. Computational Ecology and Software, 6(3), 66–82. Rushdi, A. M. (2016). Quantification of uncertainty in the reliability of migration between habitat patches. Computational Ecology and Software, 6(3), 66–82.
22.
Zurück zum Zitat Jordán, F. (2000). A reliability-theory approach to corridor design. Ecological Modelling, 128(2–3), 211–220.CrossRef Jordán, F. (2000). A reliability-theory approach to corridor design. Ecological Modelling, 128(2–3), 211–220.CrossRef
23.
Zurück zum Zitat Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. A., & Mead, N. R. (1999). Survivability: Protecting your critical systems. IEEE Internet Computing, 3(6), 55–63.CrossRef Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. A., & Mead, N. R. (1999). Survivability: Protecting your critical systems. IEEE Internet Computing, 3(6), 55–63.CrossRef
24.
Zurück zum Zitat Zhou, D., & Subramaniam, S. (2000). Survivability in optical networks. IEEE Network, 14(6), 16–23.CrossRef Zhou, D., & Subramaniam, S. (2000). Survivability in optical networks. IEEE Network, 14(6), 16–23.CrossRef
25.
Zurück zum Zitat Jindal, V., Dharmaraja, S., & Trivedi, K. S. (2006). Analytical survivability model for fault tolerant cellular networks supporting multiple services. Simulation Series, 38(3), 505–512. Jindal, V., Dharmaraja, S., & Trivedi, K. S. (2006). Analytical survivability model for fault tolerant cellular networks supporting multiple services. Simulation Series, 38(3), 505–512.
26.
Zurück zum Zitat Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 53(8), 1215–1234.MATHCrossRef Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 53(8), 1215–1234.MATHCrossRef
27.
Zurück zum Zitat Jindal, V., Dharmaraja, S., & Trivedi, K. S. (2011). Markov modeling approach for survivability analysis of cellular networks. International Journal of Performability Engineering, 7(5), 429–440. Jindal, V., Dharmaraja, S., & Trivedi, K. S. (2011). Markov modeling approach for survivability analysis of cellular networks. International Journal of Performability Engineering, 7(5), 429–440.
28.
Zurück zum Zitat Menasché, D. S., Avritzer, A., Suresh, S., Leão, R. M., de Souza e Silva, E., Diniz, M., et al. (2014). Assessing survivability of smart grid distribution network designs accounting for multiple failures. Concurrency and Computation: Practice and Experience, 26(12), 1949–1974.CrossRef Menasché, D. S., Avritzer, A., Suresh, S., Leão, R. M., de Souza e Silva, E., Diniz, M., et al. (2014). Assessing survivability of smart grid distribution network designs accounting for multiple failures. Concurrency and Computation: Practice and Experience, 26(12), 1949–1974.CrossRef
29.
Zurück zum Zitat Trivedi, K. S., & Xia, R. (2015). Quantification of system survivability. Telecommunication Systems, 60(4), 451–470.CrossRef Trivedi, K. S., & Xia, R. (2015). Quantification of system survivability. Telecommunication Systems, 60(4), 451–470.CrossRef
30.
Zurück zum Zitat Koziolek, A., Avritzer, A., Suresh, S., Menasché, D. S., Diniz, M., e Silva, E. D., et al. (2016). Assessing survivability to support power grid investment decisions. Reliability Engineering and System Safety, 155, 30–43.CrossRef Koziolek, A., Avritzer, A., Suresh, S., Menasché, D. S., Diniz, M., e Silva, E. D., et al. (2016). Assessing survivability to support power grid investment decisions. Reliability Engineering and System Safety, 155, 30–43.CrossRef
31.
Zurück zum Zitat Khasin, M., Meerson, B., Khain, E., & Sander, L. M. (2012). Minimizing the population extinction risk by migration. Physical Review Letters, 109(13), 138104.CrossRef Khasin, M., Meerson, B., Khain, E., & Sander, L. M. (2012). Minimizing the population extinction risk by migration. Physical Review Letters, 109(13), 138104.CrossRef
32.
Zurück zum Zitat Stamps, J. A., Buechner, M., & Krishnan, V. V. (1987). The effects of edge permeability and habitat geometry on emigration from patches of habitat. The American Naturalist, 129(4), 533–552.CrossRef Stamps, J. A., Buechner, M., & Krishnan, V. V. (1987). The effects of edge permeability and habitat geometry on emigration from patches of habitat. The American Naturalist, 129(4), 533–552.CrossRef
33.
Zurück zum Zitat Collinge, S. K. (1998). Spatial arrangement of habitat patches and corridors: Clues from ecological field experiments. Landscape and Urban Planning., 42(2–4), 157–168.CrossRef Collinge, S. K. (1998). Spatial arrangement of habitat patches and corridors: Clues from ecological field experiments. Landscape and Urban Planning., 42(2–4), 157–168.CrossRef
34.
Zurück zum Zitat Tulloch, A. I., Barnes, M. D., Ringma, J., Fuller, R. A., & Watson, J. E. (2016). Understanding the importance of small patches of habitat for conservation. Journal of Applied Ecology, 53(2), 418–429.CrossRef Tulloch, A. I., Barnes, M. D., Ringma, J., Fuller, R. A., & Watson, J. E. (2016). Understanding the importance of small patches of habitat for conservation. Journal of Applied Ecology, 53(2), 418–429.CrossRef
35.
Zurück zum Zitat Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., et al. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, 116(3), 909–914.CrossRef Wintle, B. A., Kujala, H., Whitehead, A., Cameron, A., Veloz, S., Kukkala, A., et al. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, 116(3), 909–914.CrossRef
36.
Zurück zum Zitat Misra, K. B. (2012). Reliability analysis and prediction: A methodology oriented treatment. Elsevier. Misra, K. B. (2012). Reliability analysis and prediction: A methodology oriented treatment. Elsevier.
37.
Zurück zum Zitat Misra, K. B. (Ed). (2012). New trends in system reliability evaluation. Elsevier. Misra, K. B. (Ed). (2012). New trends in system reliability evaluation. Elsevier.
38.
Zurück zum Zitat Misra, K. B. (Ed.). (2008). Handbook of performability engineering. Springer Science and Business Media. Misra, K. B. (Ed.). (2008). Handbook of performability engineering. Springer Science and Business Media.
39.
Zurück zum Zitat Rushdi, A. M., & Goda, A. S. (1985). Symbolic reliability analysis via Shannon’s expansion and statistical independence. Microelectronics and Reliability, 25(6), 1041–1053.CrossRef Rushdi, A. M., & Goda, A. S. (1985). Symbolic reliability analysis via Shannon’s expansion and statistical independence. Microelectronics and Reliability, 25(6), 1041–1053.CrossRef
40.
Zurück zum Zitat Rushdi, A. M., & Abdulghani, A. A. (1993). A comparison between reliability analyses based primarily on disjointness or statistical independence: The case of the generalized INDRA network. Microelectronics and Reliability, 33(7), 965–978.CrossRef Rushdi, A. M., & Abdulghani, A. A. (1993). A comparison between reliability analyses based primarily on disjointness or statistical independence: The case of the generalized INDRA network. Microelectronics and Reliability, 33(7), 965–978.CrossRef
41.
Zurück zum Zitat Rushdi, A. M., & Rushdi, M. A. (2017). Switching-algebraic analysis of system reliability. Chapter 6 in Ram, M., & Davim, P. (Eds.). Advances in Reliability and System Engineering (pp. 139–161). Switzerland: Springer International Publishing, Cham. Rushdi, A. M., & Rushdi, M. A. (2017). Switching-algebraic analysis of system reliability. Chapter 6 in Ram, M., & Davim, P. (Eds.). Advances in Reliability and System Engineering (pp. 139–161). Switzerland: Springer International Publishing, Cham.
42.
Zurück zum Zitat Rushdi, A. M. (1983). How to hand-check a symbolic reliability expression. IEEE Transactions on Reliability, 32(5), 402–408.MATHCrossRef Rushdi, A. M. (1983). How to hand-check a symbolic reliability expression. IEEE Transactions on Reliability, 32(5), 402–408.MATHCrossRef
43.
Zurück zum Zitat Rushdi, A. M., & Ghaleb, F. A. (2014). The Walsh spectrum and the real transform of a switching function: A review with a Karnaugh-map perspective. Journal of Qassim University: Engineering and Computer Sciences, 7(2), 73–112. Rushdi, A. M., & Ghaleb, F. A. (2014). The Walsh spectrum and the real transform of a switching function: A review with a Karnaugh-map perspective. Journal of Qassim University: Engineering and Computer Sciences, 7(2), 73–112.
44.
Zurück zum Zitat Misra, K. B. (1970). An algorithm for the reliability evaluation of redundant networks. IEEE Transactions on Reliability, 19(4), 146–151.CrossRef Misra, K. B. (1970). An algorithm for the reliability evaluation of redundant networks. IEEE Transactions on Reliability, 19(4), 146–151.CrossRef
45.
Zurück zum Zitat Aggarwal, K. K., Misra, K. B., & Gupta, J. S. (1975). Reliability evaluation a comparative study of different techniques. Microelectronics Reliability, 14(1), 49–56.CrossRef Aggarwal, K. K., Misra, K. B., & Gupta, J. S. (1975). Reliability evaluation a comparative study of different techniques. Microelectronics Reliability, 14(1), 49–56.CrossRef
46.
Zurück zum Zitat Rushdi, A. M. (1984). On reliability evaluation by network decomposition. IEEE Transactions on Reliability, 33(5), 379–384.MATHCrossRef Rushdi, A. M. (1984). On reliability evaluation by network decomposition. IEEE Transactions on Reliability, 33(5), 379–384.MATHCrossRef
47.
Zurück zum Zitat Rushdi, R. A., Rushdi, A. M., & Talmees, F. A. (2018). Novel pedagogical methods for conditional-probability computations in medical disciplines. Journal of Advances in Medicine and Medical Research., 25(10), 1–15.CrossRef Rushdi, R. A., Rushdi, A. M., & Talmees, F. A. (2018). Novel pedagogical methods for conditional-probability computations in medical disciplines. Journal of Advances in Medicine and Medical Research., 25(10), 1–15.CrossRef
48.
Zurück zum Zitat Jiang, Y., & Yang, W. (2013). An approach based on theorem of total probability for reliability analysis of RC columns with random eccentricity. Structural Safety, 1(41), 37–46.CrossRef Jiang, Y., & Yang, W. (2013). An approach based on theorem of total probability for reliability analysis of RC columns with random eccentricity. Structural Safety, 1(41), 37–46.CrossRef
49.
50.
Zurück zum Zitat Page, L. B., & Perry, J. E. (1988). A practical implementation of the factoring theorem for network reliability. IEEE Transactions on Reliability, 37(3), 259–267.CrossRef Page, L. B., & Perry, J. E. (1988). A practical implementation of the factoring theorem for network reliability. IEEE Transactions on Reliability, 37(3), 259–267.CrossRef
51.
Zurück zum Zitat Rushdi, A. M., & Al-Hindi, K. A. (1993). A table for the lower boundary of the region of useful redundancy for k-out-of-n systems. Microelectronics and Reliability, 33(7), 979–992.CrossRef Rushdi, A. M., & Al-Hindi, K. A. (1993). A table for the lower boundary of the region of useful redundancy for k-out-of-n systems. Microelectronics and Reliability, 33(7), 979–992.CrossRef
52.
Zurück zum Zitat Rushdi, A. M., Hassan, A. K., & Moinuddin, M. (2020). System reliability analysis of small-cell deployment in heterogeneous cellular networks. Telecommunication Systems, 73(3), 371–381.CrossRef Rushdi, A. M., Hassan, A. K., & Moinuddin, M. (2020). System reliability analysis of small-cell deployment in heterogeneous cellular networks. Telecommunication Systems, 73(3), 371–381.CrossRef
53.
Zurück zum Zitat Liu, K. R., Kuo, J. Y., Yeh, K., Chen, C. W., Liang, H. H., & Sun, Y. H. (2015). Using fuzzy logic to generate conditional probabilities in Bayesian belief networks: A case study of ecological assessment. International Journal of Environmental Science and Technology, 12(3), 871–884.CrossRef Liu, K. R., Kuo, J. Y., Yeh, K., Chen, C. W., Liang, H. H., & Sun, Y. H. (2015). Using fuzzy logic to generate conditional probabilities in Bayesian belief networks: A case study of ecological assessment. International Journal of Environmental Science and Technology, 12(3), 871–884.CrossRef
54.
Zurück zum Zitat Nichols, J. D., & Kendall, W. L. (1995). The use of multi-state capture-recapture models to address questions in evolutionary ecology. Journal of Applied Statistics, 22(5–6), 835–846.CrossRef Nichols, J. D., & Kendall, W. L. (1995). The use of multi-state capture-recapture models to address questions in evolutionary ecology. Journal of Applied Statistics, 22(5–6), 835–846.CrossRef
55.
Zurück zum Zitat Rushdi, A. M. (1988). Indexes of a telecommunication network. IEEE Transactions on Reliability, 37(1), 57–64.MATHCrossRef Rushdi, A. M. (1988). Indexes of a telecommunication network. IEEE Transactions on Reliability, 37(1), 57–64.MATHCrossRef
56.
Zurück zum Zitat Jane, C. C., Lin, J. S., & Yuan, J. (1993). Reliability evaluation of a limited-flow network in terms of minimal cutsets. IEEE Transactions on Reliability, 42(3), 354–361.MATHCrossRef Jane, C. C., Lin, J. S., & Yuan, J. (1993). Reliability evaluation of a limited-flow network in terms of minimal cutsets. IEEE Transactions on Reliability, 42(3), 354–361.MATHCrossRef
57.
Zurück zum Zitat Lin, J. S., Jane, C. C., & Yuan, J. (1995). On reliability evaluation of a capacitated-flow network in terms of minimal pathsets. Networks, 25(3), 131–138.MATHCrossRef Lin, J. S., Jane, C. C., & Yuan, J. (1995). On reliability evaluation of a capacitated-flow network in terms of minimal pathsets. Networks, 25(3), 131–138.MATHCrossRef
Metadaten
Titel
On the Interplay Between Ecology and Reliability
verfasst von
Ali Muhammad Ali Rushdi
Ahmad Kamal Hassan
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-55732-4_35

Neuer Inhalt