Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

On the Keller limit and generalization

verfasst von: Yue Hu, Cristinel Mortici

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Let c be any real number and let
$$u_{n}(c)=(n+1) \biggl(1+\frac{1}{n+c} \biggr)^{n+c}-n \biggl(1+\frac {1}{n+c-1} \biggr)^{n+c-1}-e. $$
In this note, we establish an integral expression of \(u_{n}(c)\), which provides a direct proof of Theorem 1 in (Mortici and Jang in Filomat 7:1535-1539, 2015).
Hinweise

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors’ contributions

The authors completed the paper together. They also read and approved the final manuscript.

1 Introduction motivation

The limit
$$\lim_{n\rightarrow\infty} \biggl(\frac{(n+1)^{n+1}}{n^{n}}-\frac{n^{n}}{(n-1)^{n-1}} \biggr)=e $$
is well known in the literature as the Keller’s limit, see [2]. Such a limit is very useful in many mathematical contexts and contributes as a tool for establishing some interesting inequalities [36].
In the recent paper [1], Mortici et al. have constructed a new proof of the limit and have discovered the following new results which generalize the Keller limit.
Theorem 1
Let c be any real number and let
$$u_{n}(c)=(n+1) \biggl(1+\frac{1}{n+c} \biggr)^{n+c}-n \biggl(1+\frac {1}{n+c-1} \biggr)^{n+c-1}-e. $$
Then
$$\begin{aligned}& \lim_{n\rightarrow\infty}u_{n}(c)=0, \end{aligned}$$
(1.1)
$$\begin{aligned}& \lim_{n\rightarrow\infty}n^{2}u_{n}(c)= \frac{e}{24}(1-12c), \end{aligned}$$
(1.2)
$$\begin{aligned}& \lim_{n\rightarrow\infty}n^{3}u_{n}\biggl( \frac{1}{12}\biggr)=\frac{5e}{144}. \end{aligned}$$
(1.3)
The proof of Theorem 1 given in [1] is based on the following double inequality for every x in \(0< x\leq1\):
$$a(x)< (1+x)^{1/x}< b(x), $$
where
$$a(x)=e-\frac{e}{2x}+\frac{11ex^{2}}{24}-\frac{21ex^{3}}{48}+ \frac {2{,}447ex^{4}}{5{,}760}-\frac{959ex^{5}}{2{,}304} $$
and
$$b(x)=a(x)+\frac{959ex^{5}}{2{,}304}. $$
But, this proof has a major objection, namely, for the reader it is very difficult to observe the behavior of \(u_{n}(c)\) as \(n\rightarrow\infty\).
In this note, we will establish an integral expression of \(u_{n}(c)\), which tells us that Theorem 1 is a natural result.

2 Main results

To establish an integral expression of \(u_{n}(c)\), we first recall the following result we obtained in [7].
Theorem 2
Let \(h(s)=\frac{\sin(\pi s)}{\pi}s^{s}(1-s)^{1-s}\), \(0\leq s\leq 1\). Then for every \(x>0\), we have
$$ \biggl(1+\frac{1}{x} \biggr)^{x} =e \Biggl(1-\sum _{j=1}^{\infty}\frac{b_{j}}{(1+x)^{j}} \Biggr), $$
(2.1)
where
$$\begin{aligned}& b_{1}=\frac{1}{2}, \end{aligned}$$
(2.2)
$$\begin{aligned}& b_{j}=\frac{1}{e} \int_{0}^{1}s^{j-2}h(s)\,ds \quad(j=2,3, \ldots). \end{aligned}$$
(2.3)
In [8] (see also [9, 10]) Yang has proved that \(b_{2}=\frac{1}{24}\), \(b_{3}=\frac{1}{48}\).
Hence
$$\begin{aligned}& \int_{0}^{1}h(s)\,ds=\frac{e}{24}, \end{aligned}$$
(2.4)
$$\begin{aligned}& \int_{0}^{1}sh(s)\,ds=\frac{e}{48}. \end{aligned}$$
(2.5)
Now, we establish an integral expression of \(u_{n}(c)\). Equation (2.1) implies the following results:
$$\begin{aligned}& \biggl(1+\frac{1}{n+c} \biggr)^{n+c} =e \Biggl(1-\sum _{j=1}^{\infty}\frac{b_{j}}{(1+n+c)^{j}} \Biggr), \end{aligned}$$
(2.6)
$$\begin{aligned}& \biggl(1+\frac{1}{n+c-1} \biggr)^{n+c-1} =e \Biggl(1-\sum _{j=1}^{\infty}\frac{b_{j}}{(n+c)^{j}} \Biggr). \end{aligned}$$
(2.7)
Hence by (2.2), (2.3), (2.6), and (2.7), we have
$$\begin{aligned} u_{n}(c) =&\frac{e}{2} \biggl(\frac{n}{n+c} - \frac{n+1}{1+n+c} \biggr)+ \int_{0}^{1}h(s)\sum_{j=2}^{\infty} \frac {ns^{j-2}}{(n+c)^{j}}\,ds \\ &{}- \int_{0}^{1}h(s)\sum_{j=2}^{\infty} \frac{(n+1)s^{j-2}}{(1+n+c)^{j}}\,ds. \end{aligned}$$
(2.8)
Note that
$$\begin{aligned}& \frac{e}{2}= \int_{0}^{1}12h(s)\,ds, \end{aligned}$$
(2.9)
$$\begin{aligned}& \sum_{j=2}^{\infty} \frac{ns^{j-2}}{(n+c)^{j}}=\frac{1}{(n+c)(n+c-s)}, \end{aligned}$$
(2.10)
$$\begin{aligned}& \sum_{j=2}^{\infty} \frac{(n+1)s^{j-2}}{(1+n+c)^{j}}=\frac{1}{(1+n+c)(1+n+c-s)}. \end{aligned}$$
(2.11)
Therefore, from (2.8)-(2.11), we obtain the desired result:
$$\begin{aligned} u_{n}(c)= \int_{0}^{1}h(s)\frac{(1-12c)n^{2} +(1-12c+24cs-24c^{2})n+K}{(n+c)(1+n+c)(n+c-s)(1+n+c-s)}\,ds, \end{aligned}$$
(2.12)
where
$$K=s^{2}-(1+2c)s+c+c^{2}. $$
From (2.12), we get immediately
$$\begin{aligned}& \lim_{n\rightarrow\infty}u_{n}(c)=0, \\& \lim_{n\rightarrow\infty}n^{2}u_{n}(c)= \int_{0}^{1}(1-12c)h(s)\,ds \\& \hphantom{\lim_{n\rightarrow\infty}n^{2}u_{n}(c)}=\frac{e}{24}(1-12c), \\& \lim_{n\rightarrow\infty}n^{3}u_{n}\biggl( \frac{1}{12}\biggr)= \int_{0}^{1}\biggl(2s-\frac{1}{6} \biggr)h(s)\,ds \\& \hphantom{\lim_{n\rightarrow\infty}n^{3}u_{n}\biggl( \frac{1}{12}\biggr)}=\frac{e}{24}-\frac{1}{6}\times\frac{e}{24} \\& \hphantom{\lim_{n\rightarrow\infty}n^{3}u_{n}\biggl( \frac{1}{12}\biggr)}=\frac{5e}{144}. \end{aligned}$$

3 Conclusions

We have established an integral expression of \(u_{n}(c)\), which provides a direct proof of Theorem 1 in [1] and tell us that Theorem 1 is a natural result. We believe that the expression will lead to a significant contribution toward the study of Keller’s limit.

Acknowledgements

The work was supported by the National Natural Science Foundation of China, No. 11471103.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors’ contributions

The authors completed the paper together. They also read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Mortici, C, Jang, X: Estimates of \((1+ 1/x)^{x}\) involved in Carleman’s inequality and Keller’s limit. Filomat 7, 1535-1539 (2015) MathSciNetCrossRef Mortici, C, Jang, X: Estimates of \((1+ 1/x)^{x}\) involved in Carleman’s inequality and Keller’s limit. Filomat 7, 1535-1539 (2015) MathSciNetCrossRef
2.
Zurück zum Zitat Sandor, J, Debnath, L: On certain inequalities involving the constant e and their applications. J. Math. Anal. Appl. 249(2), 569-582 (2000) MathSciNetCrossRefMATH Sandor, J, Debnath, L: On certain inequalities involving the constant e and their applications. J. Math. Anal. Appl. 249(2), 569-582 (2000) MathSciNetCrossRefMATH
3.
Zurück zum Zitat Polya, G, Szego, G: Problems and Theorems in Analysis, vol. I. Springer, New York (1972) CrossRefMATH Polya, G, Szego, G: Problems and Theorems in Analysis, vol. I. Springer, New York (1972) CrossRefMATH
4.
Zurück zum Zitat Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, London (1952) MATH Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, London (1952) MATH
5.
Zurück zum Zitat Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman’s inequality. Carpath. J. Math. 31, 249-254 (2015) MathSciNet Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman’s inequality. Carpath. J. Math. 31, 249-254 (2015) MathSciNet
7.
Zurück zum Zitat Hu, Y, Mortici, C: On the coefficients of an expansion of \((1+\frac{1}{x})^{x}\) related to Carleman’s inequality. arXiv:1401.2236 [math.CA] Hu, Y, Mortici, C: On the coefficients of an expansion of \((1+\frac{1}{x})^{x}\) related to Carleman’s inequality. arXiv:​1401.​2236 [math.CA]
10.
Metadaten
Titel
On the Keller limit and generalization
verfasst von
Yue Hu
Cristinel Mortici
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1042-z

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe