Skip to main content
Erschienen in: Steel in Translation 9/2019

01.09.2019

On the Mechanism of Conglomerate Formation from Nonmetallic Inclusions Based on Al2O3–CaO–MgO System in the Production of Steel at Modern Metallurgical Complexes

verfasst von: A. A. Safronov, V. S. Dub, V. V. Orlov, K. L. Kosyrev, A. S. Loskutov, K. A. Moskovoy

Erschienen in: Steel in Translation | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of studies on the formation of nonmetallic inclusions (NMI) of the Al2O3–CaO–MgO system and pinholes in rolled steel produced at modern metallurgical complexes are presented. It is shown that the mechanism of NMI conglomerate formation on the surface of the batching cup and the submersible cup under outflowing non-calcium-treated steels containing aluminum from the tundish ladle is valid as applied to teeming with the modification of NMI. An assessment method is proposed for the efficiency of the out-of-furnace steel processing technology of obtaining steel purified from NMI and with optimally modified NMI. The proposed method consists in assessing the range of stopper movement in the course of steel teeming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Itoh, H., Hino, M., and Ban-ya, S., Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel, Metall. Mater. Trans. B, 1997, vol. 28, no. 5, pp. 953–956.CrossRef Itoh, H., Hino, M., and Ban-ya, S., Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel, Metall. Mater. Trans. B, 1997, vol. 28, no. 5, pp. 953–956.CrossRef
2.
Zurück zum Zitat Zaitsev, A.I., Rodionova, I.G., Semernin, G.V., Shaposhnikov, N.G., and Kazankov, A.Yu., New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 1. Reasons and mechanisms for formation in steel of nonmetallic inclusions based on alumina magnesia spinel, Metallurgist, 2011, vol. 55, nos. 1–2, pp. 107–115.CrossRef Zaitsev, A.I., Rodionova, I.G., Semernin, G.V., Shaposhnikov, N.G., and Kazankov, A.Yu., New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 1. Reasons and mechanisms for formation in steel of nonmetallic inclusions based on alumina magnesia spinel, Metallurgist, 2011, vol. 55, nos. 1–2, pp. 107–115.CrossRef
3.
Zurück zum Zitat Zaitsev, A.I., Rodionova, I.G., Semernin, G.V., Shaposhnikov, N.G., and Kazankov, A.Yu., New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 2. Transformation mechanisms for nonmetallic inclusions based on alumina magnesia spinel. Main approaches making it possible to reduce the content of the inclusions in question in steel, Metallurgist, 2011, vol. 55, nos. 3–4, pp. 149–157.CrossRef Zaitsev, A.I., Rodionova, I.G., Semernin, G.V., Shaposhnikov, N.G., and Kazankov, A.Yu., New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 2. Transformation mechanisms for nonmetallic inclusions based on alumina magnesia spinel. Main approaches making it possible to reduce the content of the inclusions in question in steel, Metallurgist, 2011, vol. 55, nos. 3–4, pp. 149–157.CrossRef
4.
Zurück zum Zitat Safronov, A.A., Movchan, M.A., Dub, V.S., et al., Production of corrosion-resistant 09ГCФ steel, Steel Transl., 2016, vol. 46, no. 2, pp 150–158.CrossRef Safronov, A.A., Movchan, M.A., Dub, V.S., et al., Production of corrosion-resistant 09ГCФ steel, Steel Transl., 2016, vol. 46, no. 2, pp 150–158.CrossRef
5.
Zurück zum Zitat Dub, V.S., Safronov, A.A., Movchan, M.A., et al., Effect of a secondary metallurgy technology on the types of forming nonmetallic inclusions and the corrosion resistance of steel, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 12, pp. 1135–1144.CrossRef Dub, V.S., Safronov, A.A., Movchan, M.A., et al., Effect of a secondary metallurgy technology on the types of forming nonmetallic inclusions and the corrosion resistance of steel, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 12, pp. 1135–1144.CrossRef
6.
Zurück zum Zitat Safronov, A.A., Dub, V.S., Orlov, V.V., et al., Regulating the formation of Al2O3–CaO–MgO inclusions in pipe-steel production, Steel Transl., 2019, vol. 49, no. 2, pp. 123–130.CrossRef Safronov, A.A., Dub, V.S., Orlov, V.V., et al., Regulating the formation of Al2O3–CaO–MgO inclusions in pipe-steel production, Steel Transl., 2019, vol. 49, no. 2, pp. 123–130.CrossRef
7.
Zurück zum Zitat Beskow, K., Tripathi, N.N., Nzotta, M., et al., Impact of slag—refractory lining reactions on the formation of inclusions in steel, Ironmaking Steelmaking, 2004, vol. 31, no. 6, pp. 514–518.CrossRef Beskow, K., Tripathi, N.N., Nzotta, M., et al., Impact of slag—refractory lining reactions on the formation of inclusions in steel, Ironmaking Steelmaking, 2004, vol. 31, no. 6, pp. 514–518.CrossRef
8.
Zurück zum Zitat Yang, W., Zhang, L., Wang, X., et al., Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment, ISIJ Int., 2013, vol. 53, no. 8, pp. 1401–1410.CrossRef Yang, W., Zhang, L., Wang, X., et al., Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment, ISIJ Int., 2013, vol. 53, no. 8, pp. 1401–1410.CrossRef
9.
Zurück zum Zitat Jung, I.H., Decterov, S.A., and Pelton, A.D., Computer applications of thermodynamic databases to inclusion engineering, ISIJ Int., 2004, vol. 44, no. 3, pp. 527–536.CrossRef Jung, I.H., Decterov, S.A., and Pelton, A.D., Computer applications of thermodynamic databases to inclusion engineering, ISIJ Int., 2004, vol. 44, no. 3, pp. 527–536.CrossRef
10.
Zurück zum Zitat Sokolov, V.V., Foigt, D.B., Zhuravlev, I.D., et al., Development of the production of slag-forming mixtures for continuous casting of steel at West-Siberian Metal Plant, Stal’, 2004, no. 9, pp. 20–22. Sokolov, V.V., Foigt, D.B., Zhuravlev, I.D., et al., Development of the production of slag-forming mixtures for continuous casting of steel at West-Siberian Metal Plant, Stal’, 2004, no. 9, pp. 20–22.
11.
Zurück zum Zitat Kazakov, A.A., Kovalev, P.V., Ryaboshuk, S.V., et al., Controlling the formation of non-metal inclusions in production of converter steel, Chern. Met., 2014, no. 34, pp. 43–48. Kazakov, A.A., Kovalev, P.V., Ryaboshuk, S.V., et al., Controlling the formation of non-metal inclusions in production of converter steel, Chern. Met., 2014, no. 34, pp. 43–48.
12.
Zurück zum Zitat Safronov, A.A., Prilukov, S.B., Tazetdinov, V.I., and Torokhov, G.V., Comparison of the nitrogen content in ladle sample and finished products, Stal’, 2014, no. 12, pp. 29–31. Safronov, A.A., Prilukov, S.B., Tazetdinov, V.I., and Torokhov, G.V., Comparison of the nitrogen content in ladle sample and finished products, Stal’, 2014, no. 12, pp. 29–31.
13.
Zurück zum Zitat Lebedev, I.V., Improving the assimilative ability of slag melt in the intermediate ladle during continuous casting of low-carbon steels deoxidized by aluminum, Cand. Sci. (Eng.) Dissertation, Moscow: Natl. Univ. Sci. Technol., MISIS, 2014. Lebedev, I.V., Improving the assimilative ability of slag melt in the intermediate ladle during continuous casting of low-carbon steels deoxidized by aluminum, Cand. Sci. (Eng.) Dissertation, Moscow: Natl. Univ. Sci. Technol., MISIS, 2014.
14.
Zurück zum Zitat Safronov, A.A., Golovin, V.V., Belokozovich, Yu.B., et al., Production of continuous-cast pipe blank without large nonmetallic inclusions, Steel Transl., 2016, vol. 46, no. 6, pp. 428–434.CrossRef Safronov, A.A., Golovin, V.V., Belokozovich, Yu.B., et al., Production of continuous-cast pipe blank without large nonmetallic inclusions, Steel Transl., 2016, vol. 46, no. 6, pp. 428–434.CrossRef
15.
Zurück zum Zitat Hayden, R. and Chakraborty, S., Steel cleanliness improvements at National Steel Great Lakes Division, No. 2 caster, Rev. Metall. (Paris), 1996, vol. 93, no. 4, pp. 511–521.CrossRef Hayden, R. and Chakraborty, S., Steel cleanliness improvements at National Steel Great Lakes Division, No. 2 caster, Rev. Metall. (Paris), 1996, vol. 93, no. 4, pp. 511–521.CrossRef
16.
Zurück zum Zitat Lukavaya, M.S. and Mikhailov, G.G., Analysis of the tightening of immersed nozzles during continuous casting of steel, Vestn. Yuzhn. Ural. Gos. Univ., 2006, no. 10, pp. 69–72. Lukavaya, M.S. and Mikhailov, G.G., Analysis of the tightening of immersed nozzles during continuous casting of steel, Vestn. Yuzhn. Ural. Gos. Univ., 2006, no. 10, pp. 69–72.
17.
Zurück zum Zitat Goldobina, K., Physical and mathematical modeling of hydrodynamic processes and the distribution of nonmetallic inclusions within the intermediate ladle of the double-strand slab continuous casting machine. https://pandia.ru/text/78/335/318.php. Goldobina, K., Physical and mathematical modeling of hydrodynamic processes and the distribution of nonmetallic inclusions within the intermediate ladle of the double-strand slab continuous casting machine. https://​pandia.​ru/​text/​78/​335/​318.​php.​
18.
Zurück zum Zitat Wünnenberg, K. and Förster, H., Stahl Eisen, 1984, vol. 104, no. 13, pp. 581–585. Wünnenberg, K. and Förster, H., Stahl Eisen, 1984, vol. 104, no. 13, pp. 581–585.
19.
Zurück zum Zitat Shchukina, L.I., tuvaev, V.F., Komolova, O.A., and Grigorovich, K.V., The causes of reduced spillability of sheet steel at national enterprises, Trudy XV Mezhdunarodnogo kongressa staleplavil’shchikov (Proc. XV Int. Congr. of Steel Makers), Moscow, 2018, pp. 357–362. Shchukina, L.I., tuvaev, V.F., Komolova, O.A., and Grigorovich, K.V., The causes of reduced spillability of sheet steel at national enterprises, Trudy XV Mezhdunarodnogo kongressa staleplavil’shchikov (Proc. XV Int. Congr. of Steel Makers), Moscow, 2018, pp. 357–362.
Metadaten
Titel
On the Mechanism of Conglomerate Formation from Nonmetallic Inclusions Based on Al2O3–CaO–MgO System in the Production of Steel at Modern Metallurgical Complexes
verfasst von
A. A. Safronov
V. S. Dub
V. V. Orlov
K. L. Kosyrev
A. S. Loskutov
K. A. Moskovoy
Publikationsdatum
01.09.2019
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 9/2019
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219090110

Weitere Artikel der Ausgabe 9/2019

Steel in Translation 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.