Skip to main content
Erschienen in: Journal of Computational Electronics 2/2018

06.03.2018

On the optoelectronic properties of non-covalently functionalized graphene for solar cell application

verfasst von: Rihab Chouk, Manel Bergaoui, Mohamed Khalfaoui

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we report a simple approach toward the non-covalent functionalization of graphene by anthracene and thiophene molecules in different configurations, depending on the direction of the molecules approach to the surface of graphene. We examined structural, optoelectronic and vibrational properties of graphene before and after interaction with anthracene and thiophene. The density functional theory at B3LYP with 6-311G(d,p), 6-31G(d,p) and 6-31G(d) was employed to choose appropriate basis set that provides a more accurate molecular–properties description. This is important to compare and understand the deep relationship between the chemical structure of these heterostructures and their related properties to be chosen as an active layer in electronic devices. The device-based thiophene–graphene with perpendicular configuration film as an active layer in CdTe/CdS solar cell shows the best performance with a power conversion efficiency of \(9.58\%\), an open-circuit voltage of \(0.7\,\hbox {V}\), a short-circuit current density of \(24.47\,\hbox {mA}\,\hbox {cm}^{2}\) and a fill factor of \(55.92\%\) under simulated AM1.5 conditions at \(1000\,\hbox {W}\,\hbox {m}^{2}\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
2.
Zurück zum Zitat Isoniemi, T., Tuukkanen, S., Cameron, D.C., Simonen, J., Toppari, J.J.: Measuring optical anisotropy in poly (3, 4-ethylene dioxythiophene): poly (styrene sulfonate) films with added graphene. Org. Electron. 25, 317–323 (2015)CrossRef Isoniemi, T., Tuukkanen, S., Cameron, D.C., Simonen, J., Toppari, J.J.: Measuring optical anisotropy in poly (3, 4-ethylene dioxythiophene): poly (styrene sulfonate) films with added graphene. Org. Electron. 25, 317–323 (2015)CrossRef
3.
Zurück zum Zitat Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)CrossRef Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)CrossRef
4.
Zurück zum Zitat Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher Jr., J.H., Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)CrossRef Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher Jr., J.H., Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)CrossRef
5.
Zurück zum Zitat Mabrook, M., Zeze, D.: Graphene electronics. IET Circuits Devices Syst. 9(1), 2–3 (2015)CrossRef Mabrook, M., Zeze, D.: Graphene electronics. IET Circuits Devices Syst. 9(1), 2–3 (2015)CrossRef
6.
Zurück zum Zitat Zeze, D., Mabrook, M.: Graphene electronics, volume 2. IET Circuits Devices Syst. 9(6), 385 (2015)CrossRef Zeze, D., Mabrook, M.: Graphene electronics, volume 2. IET Circuits Devices Syst. 9(6), 385 (2015)CrossRef
7.
Zurück zum Zitat Debnath, P.C., Park, J., Scott, A.M., Lee, J., Lee, J.H., Song, Y.W.: In situ synthesis of graphene with telecommunication lasers for nonlinear optical devices. Adv. Opt. Mater. 3(9), 1264–1272 (2015)CrossRef Debnath, P.C., Park, J., Scott, A.M., Lee, J., Lee, J.H., Song, Y.W.: In situ synthesis of graphene with telecommunication lasers for nonlinear optical devices. Adv. Opt. Mater. 3(9), 1264–1272 (2015)CrossRef
8.
Zurück zum Zitat Piper, J.R., Fan, S.: Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4), 347–353 (2014)CrossRef Piper, J.R., Fan, S.: Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4), 347–353 (2014)CrossRef
9.
Zurück zum Zitat Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)CrossRef Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)CrossRef
10.
Zurück zum Zitat Huang, L., Zhang, Z., Li, Z., Chen, B., Ma, X., Dong, L., Peng, L.-M.: Multifunctional graphene sensors for magnetic and hydrogen detection. ACS Appl. Mater. Interfaces 7(18), 9581–9588 (2015)CrossRef Huang, L., Zhang, Z., Li, Z., Chen, B., Ma, X., Dong, L., Peng, L.-M.: Multifunctional graphene sensors for magnetic and hydrogen detection. ACS Appl. Mater. Interfaces 7(18), 9581–9588 (2015)CrossRef
11.
Zurück zum Zitat Abbasi, E., Akbarzadeh, A., Kouhi, M., Milani, M.: Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol 44(1), 150–156 (2016)CrossRef Abbasi, E., Akbarzadeh, A., Kouhi, M., Milani, M.: Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol 44(1), 150–156 (2016)CrossRef
12.
Zurück zum Zitat Zhou, G., Pei, S., Li, L., Wang, D.W., Wang, S., Huang, K., Yin, L.C., Li, F., Cheng, H.M.: A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26(4), 625–631 (2014)CrossRef Zhou, G., Pei, S., Li, L., Wang, D.W., Wang, S., Huang, K., Yin, L.C., Li, F., Cheng, H.M.: A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26(4), 625–631 (2014)CrossRef
13.
Zurück zum Zitat Deng, B., Hsu, P.-C., Chen, G., Chandrashekar, B., Liao, L., Ayitimuda, Z., Wu, J., Guo, Y., Lin, L., Zhou, Y.: Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15(6), 4206–4213 (2015)CrossRef Deng, B., Hsu, P.-C., Chen, G., Chandrashekar, B., Liao, L., Ayitimuda, Z., Wu, J., Guo, Y., Lin, L., Zhou, Y.: Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15(6), 4206–4213 (2015)CrossRef
14.
Zurück zum Zitat Biccari, F., Gabelloni, F., Burzi, E., Gurioli, M., Pescetelli, S., Agresti, A., Di Carlo, A., Bonaccorso, F., Kymakis, E., Vinattieri, A.: Sensing the role of graphene-based electron transport layer in perovskite solar cells by photoluminescence spectroscopy (2017). Preprint arXiv:1702.04159 Biccari, F., Gabelloni, F., Burzi, E., Gurioli, M., Pescetelli, S., Agresti, A., Di Carlo, A., Bonaccorso, F., Kymakis, E., Vinattieri, A.: Sensing the role of graphene-based electron transport layer in perovskite solar cells by photoluminescence spectroscopy (2017). Preprint arXiv:​1702.​04159
15.
Zurück zum Zitat Lee, D.-Y., Na, S.-I., Kim, S.-S.: Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)CrossRef Lee, D.-Y., Na, S.-I., Kim, S.-S.: Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)CrossRef
16.
Zurück zum Zitat Zhang, Y., Tsu, R., Naili, Y.: Growth of semiconductors on hetero-substrates using graphene as an interfacial layer. Google Patents (2017) Zhang, Y., Tsu, R., Naili, Y.: Growth of semiconductors on hetero-substrates using graphene as an interfacial layer. Google Patents (2017)
17.
Zurück zum Zitat Jiao, K., Wang, X., Wang, Y., Chen, Y.: Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J. Mater. Chem. C. 2(37), 7715–7721 (2014)CrossRef Jiao, K., Wang, X., Wang, Y., Chen, Y.: Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J. Mater. Chem. C. 2(37), 7715–7721 (2014)CrossRef
18.
Zurück zum Zitat Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22(40), 405603 (2011)CrossRef Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22(40), 405603 (2011)CrossRef
19.
Zurück zum Zitat Rad, A.S., Sani, E., Binaeian, E., Peyravi, M., Jahanshahi, M.: DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene. Appl. Surf. Sci. 401, 156–161 (2017)CrossRef Rad, A.S., Sani, E., Binaeian, E., Peyravi, M., Jahanshahi, M.: DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene. Appl. Surf. Sci. 401, 156–161 (2017)CrossRef
20.
Zurück zum Zitat Rochefort, A., Wuest, J.D.: Interaction of substituted aromatic compounds with graphene. Langmuir 25(1), 210–215 (2008)CrossRef Rochefort, A., Wuest, J.D.: Interaction of substituted aromatic compounds with graphene. Langmuir 25(1), 210–215 (2008)CrossRef
21.
Zurück zum Zitat Xu, X., Yin, J., Li, H., Zhou, Y., Li, J., Pei, J., Wu, K.: Self-assembly of benzodithiophene derivatives on graphite: effects of substitution alkoxy chain number and location. J. Phys. Chem. C 113(20), 8844–8852 (2009)CrossRef Xu, X., Yin, J., Li, H., Zhou, Y., Li, J., Pei, J., Wu, K.: Self-assembly of benzodithiophene derivatives on graphite: effects of substitution alkoxy chain number and location. J. Phys. Chem. C 113(20), 8844–8852 (2009)CrossRef
22.
Zurück zum Zitat Yang, G., Lee, C., Kim, J., Ren, F., Pearton, S.J.: Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013)CrossRef Yang, G., Lee, C., Kim, J., Ren, F., Pearton, S.J.: Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013)CrossRef
23.
Zurück zum Zitat Zhu, Y., Cai, Y., Xu, L., Zheng, L., Wang, L., Qi, B., Xu, C.: Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces 7(14), 7492–7496 (2015)CrossRef Zhu, Y., Cai, Y., Xu, L., Zheng, L., Wang, L., Qi, B., Xu, C.: Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces 7(14), 7492–7496 (2015)CrossRef
24.
Zurück zum Zitat Wang, B., Huang, M., Tao, L., Lee, S.H., Jang, A.-R., Li, B.-W., Shin, H.S., Akinwande, D., Ruoff, S.: Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10(1), 1404–1410 (2016)CrossRef Wang, B., Huang, M., Tao, L., Lee, S.H., Jang, A.-R., Li, B.-W., Shin, H.S., Akinwande, D., Ruoff, S.: Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10(1), 1404–1410 (2016)CrossRef
25.
Zurück zum Zitat Kwon, K.C., Kim, S., Kim, C., Lee, J.-L., Kim, Y.: Fluoropolymer-assisted graphene electrode for organic light-emitting diodes. Org. Electron. 15(11), 3154–3161 (2014)CrossRef Kwon, K.C., Kim, S., Kim, C., Lee, J.-L., Kim, Y.: Fluoropolymer-assisted graphene electrode for organic light-emitting diodes. Org. Electron. 15(11), 3154–3161 (2014)CrossRef
26.
Zurück zum Zitat Cui, P., Seo, S., Lee, J., Wang, L., Lee, E., Min, M., Lee, H.: Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano 5(9), 6826–6833 (2011)CrossRef Cui, P., Seo, S., Lee, J., Wang, L., Lee, E., Min, M., Lee, H.: Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano 5(9), 6826–6833 (2011)CrossRef
27.
Zurück zum Zitat Liu, J., Xue, Y., Gao, Y., Yu, D., Durstock, M., Dai, L.: Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv. Mater. 24(17), 2228–2233 (2012)CrossRef Liu, J., Xue, Y., Gao, Y., Yu, D., Durstock, M., Dai, L.: Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv. Mater. 24(17), 2228–2233 (2012)CrossRef
28.
Zurück zum Zitat Wang, D.H., Kim, J.K., Seo, J.H., Park, I., Hong, B.H., Park, J.H., Heeger, A.J.: Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 52(10), 2874–2880 (2013)CrossRef Wang, D.H., Kim, J.K., Seo, J.H., Park, I., Hong, B.H., Park, J.H., Heeger, A.J.: Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 52(10), 2874–2880 (2013)CrossRef
29.
Zurück zum Zitat Bonaccorso, F., Balis, N., Stylianakis, M.M., Savarese, M., Adamo, C., Gemmi, M., Pellegrini, V., Stratakis, E., Kymakis, E.: Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 25(25), 3870–3880 (2015)CrossRef Bonaccorso, F., Balis, N., Stylianakis, M.M., Savarese, M., Adamo, C., Gemmi, M., Pellegrini, V., Stratakis, E., Kymakis, E.: Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 25(25), 3870–3880 (2015)CrossRef
30.
Zurück zum Zitat Miao, X., Pan, K., Wang, G., Liao, Y., Wang, L., Zhou, W., Jiang, B., Pan, Q., Tian, G.: Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: a counter electrode of dye-sensitized solar cells. Chem. A Eur. J. 20(2), 474–482 (2014)CrossRef Miao, X., Pan, K., Wang, G., Liao, Y., Wang, L., Zhou, W., Jiang, B., Pan, Q., Tian, G.: Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: a counter electrode of dye-sensitized solar cells. Chem. A Eur. J. 20(2), 474–482 (2014)CrossRef
31.
Zurück zum Zitat Bai, Z., Wang, D.: Oxidation of CdTe thin film in air coated with and without a CdCl2 layer. Phys. Status Solidi (a) 209(10), 1982–1987 (2012)CrossRef Bai, Z., Wang, D.: Oxidation of CdTe thin film in air coated with and without a CdCl2 layer. Phys. Status Solidi (a) 209(10), 1982–1987 (2012)CrossRef
32.
Zurück zum Zitat Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49(17), 3014–3017 (2010)CrossRef Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49(17), 3014–3017 (2010)CrossRef
33.
Zurück zum Zitat Huang, F., Wan, D., Bi, H., Lin, T.: Applications of graphene in solar cells. Graphene: Energy storage and conversion aplications. J. Nanosci. Nanotechnol. 14(7), 4719–4732 (2014)CrossRef Huang, F., Wan, D., Bi, H., Lin, T.: Applications of graphene in solar cells. Graphene: Energy storage and conversion aplications. J. Nanosci. Nanotechnol. 14(7), 4719–4732 (2014)CrossRef
34.
Zurück zum Zitat Liu, Z., Lau, S.P., Yan, F.: Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44(15), 5638–5679 (2015)CrossRef Liu, Z., Lau, S.P., Yan, F.: Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44(15), 5638–5679 (2015)CrossRef
35.
Zurück zum Zitat Shi, Z., Jayatissa, A.H.: The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials 11(1), 36 (2017)CrossRef Shi, Z., Jayatissa, A.H.: The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials 11(1), 36 (2017)CrossRef
36.
Zurück zum Zitat Fischer, C.F.: Hartree-Fock Method for Atoms. A Numerical Approach. Physics Bulletin, New York (1977) Fischer, C.F.: Hartree-Fock Method for Atoms. A Numerical Approach. Physics Bulletin, New York (1977)
37.
Zurück zum Zitat Gross, E.K., Dreizler, R.M.: Density Functional Theory. Springer, New York (2013) Gross, E.K., Dreizler, R.M.: Density Functional Theory. Springer, New York (2013)
38.
Zurück zum Zitat Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford (2009) Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford (2009)
39.
Zurück zum Zitat Lozynski, M., Rusinska-Roszak, D., Mack, H.-G.: Hydrogen bonding and density functional calculations: the B3LYP approach as the shortest way to MP2 results. J. Phys. Chem. A 102(17), 2899–2903 (1998)CrossRef Lozynski, M., Rusinska-Roszak, D., Mack, H.-G.: Hydrogen bonding and density functional calculations: the B3LYP approach as the shortest way to MP2 results. J. Phys. Chem. A 102(17), 2899–2903 (1998)CrossRef
40.
Zurück zum Zitat Phillips, H., Zheng, Z., Geva, E., Dunietz, B.D.: Orbital gap predictions for rational design of organic photovoltaic materials. Org. Electron. 15(7), 1509–1520 (2014)CrossRef Phillips, H., Zheng, Z., Geva, E., Dunietz, B.D.: Orbital gap predictions for rational design of organic photovoltaic materials. Org. Electron. 15(7), 1509–1520 (2014)CrossRef
41.
Zurück zum Zitat Vivas-Reyes, R., Núñez-Zarur, F., Martı, E.: Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org. Electron. 9(5), 625–634 (2008)CrossRef Vivas-Reyes, R., Núñez-Zarur, F., Martı, E.: Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org. Electron. 9(5), 625–634 (2008)CrossRef
42.
Zurück zum Zitat O’boyle, N.M., Tenderholt, A.L., Langner, K.M.: Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839–845 (2008)CrossRef O’boyle, N.M., Tenderholt, A.L., Langner, K.M.: Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839–845 (2008)CrossRef
43.
Zurück zum Zitat Biegler-Konig, F., Schonbohm, J.: AIM2000 Program Package, Ver. 2.0. University of Applied Sciences, Bielefeld (2002) Biegler-Konig, F., Schonbohm, J.: AIM2000 Program Package, Ver. 2.0. University of Applied Sciences, Bielefeld (2002)
44.
Zurück zum Zitat Liu, Y., Sun, Y., Rockett, A.: A new simulation software of solar cells—wxAMPS. Sol. Energy Mater. Sol. Cells 98, 124–128 (2012)CrossRef Liu, Y., Sun, Y., Rockett, A.: A new simulation software of solar cells—wxAMPS. Sol. Energy Mater. Sol. Cells 98, 124–128 (2012)CrossRef
45.
Zurück zum Zitat Zhu, H., Kalkan, A.K., Hou, J., Fonash, S.J.: Applications of AMPS-1D for solar cell simulation. AIP (1999) Zhu, H., Kalkan, A.K., Hou, J., Fonash, S.J.: Applications of AMPS-1D for solar cell simulation. AIP (1999)
46.
Zurück zum Zitat Wang, J., Ren, X., Shi, S., Leung, C., Chan, P.K.: Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Org. Electron. 12(6), 880–885 (2011)CrossRef Wang, J., Ren, X., Shi, S., Leung, C., Chan, P.K.: Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Org. Electron. 12(6), 880–885 (2011)CrossRef
47.
Zurück zum Zitat Mirkamali, A., Muminov, K.: The effect of change the thickness on CdS/CdTe tandem multi-junction solar cells efficiency. J. Optoelectron. Nanostruct. 2(2), 13–24 (2017) Mirkamali, A., Muminov, K.: The effect of change the thickness on CdS/CdTe tandem multi-junction solar cells efficiency. J. Optoelectron. Nanostruct. 2(2), 13–24 (2017)
48.
Zurück zum Zitat Cruickshank, D., Sparks, R.: Experimental and theoretical determinations of bond lengths in naphthalene, anthracene and other hydrocarbons. The Royal Society (1960) Cruickshank, D., Sparks, R.: Experimental and theoretical determinations of bond lengths in naphthalene, anthracene and other hydrocarbons. The Royal Society (1960)
49.
Zurück zum Zitat Li, X.-C., Sirringhaus, H., Garnier, F., Holmes, A.B., Moratti, S.C., Feeder, N., Clegg, W., Teat, S.J., Friend, R.H.: A highly \(\pi \)-stacked organic semiconductor for thin film transistors based on fused thiophenes. J. Am. Chem. Soc. 120(9), 2206–2207 (1998)CrossRef Li, X.-C., Sirringhaus, H., Garnier, F., Holmes, A.B., Moratti, S.C., Feeder, N., Clegg, W., Teat, S.J., Friend, R.H.: A highly \(\pi \)-stacked organic semiconductor for thin film transistors based on fused thiophenes. J. Am. Chem. Soc. 120(9), 2206–2207 (1998)CrossRef
50.
Zurück zum Zitat Denis, P.A., Iribarne, F.: Thiophene adsorption on single wall carbon nanotubes and graphene. J. Mol. Struct. THEOCHEM 957(1), 114–119 (2010)CrossRef Denis, P.A., Iribarne, F.: Thiophene adsorption on single wall carbon nanotubes and graphene. J. Mol. Struct. THEOCHEM 957(1), 114–119 (2010)CrossRef
51.
Zurück zum Zitat Rodríguez-Ropero, F., Casanovas, J., Alemán, C.: Ab initio calculations on \(\pi \)-stacked thiophene dimer, trimer, and tetramer: structure, interaction energy, cooperative effects, and intermolecular electronic parameters. J. Comput. Chem. 29(1), 69–78 (2008)CrossRef Rodríguez-Ropero, F., Casanovas, J., Alemán, C.: Ab initio calculations on \(\pi \)-stacked thiophene dimer, trimer, and tetramer: structure, interaction energy, cooperative effects, and intermolecular electronic parameters. J. Comput. Chem. 29(1), 69–78 (2008)CrossRef
52.
Zurück zum Zitat Tsuzuki, S., Honda, K., Azumi, R.: Model chemistry calculations of thiophene dimer interactions: origin of \(\pi \)-stacking. J. Am. Chem. Soc. 124(41), 12200–12209 (2002)CrossRef Tsuzuki, S., Honda, K., Azumi, R.: Model chemistry calculations of thiophene dimer interactions: origin of \(\pi \)-stacking. J. Am. Chem. Soc. 124(41), 12200–12209 (2002)CrossRef
53.
Zurück zum Zitat Bader, R.: AIM 2000 program. McMaster University, Hamilton (2000) Bader, R.: AIM 2000 program. McMaster University, Hamilton (2000)
54.
Zurück zum Zitat Allen, R.N., Shukla, M., Leszczynski, J.: Ab initio insight on the interaction of ascorbate with Li\(^+\), Na\(^+\), K\(^+\), Be\(^2+\), Mg\(^2+\), and Ca\(^2+\) metal cations. Int. J. Quantum Chem. 106(11), 2366–2372 (2006)CrossRef Allen, R.N., Shukla, M., Leszczynski, J.: Ab initio insight on the interaction of ascorbate with Li\(^+\), Na\(^+\), K\(^+\), Be\(^2+\), Mg\(^2+\), and Ca\(^2+\) metal cations. Int. J. Quantum Chem. 106(11), 2366–2372 (2006)CrossRef
55.
Zurück zum Zitat Venkataramanan, N.S., Ambigapathy, S.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83(3–4), 387–400 (2015)CrossRef Venkataramanan, N.S., Ambigapathy, S.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83(3–4), 387–400 (2015)CrossRef
56.
Zurück zum Zitat Espinosa, E., Molins, E., Lecomte, C.: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285(3), 170–173 (1998)CrossRef Espinosa, E., Molins, E., Lecomte, C.: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285(3), 170–173 (1998)CrossRef
57.
Zurück zum Zitat Yao, X., Kou, X., Qiu, J.: Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity. Org. Electron. 38, 55–60 (2016)CrossRef Yao, X., Kou, X., Qiu, J.: Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity. Org. Electron. 38, 55–60 (2016)CrossRef
58.
Zurück zum Zitat Okulik, N., Jubert, A.H.: Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Des. 4(1), 17–30 (2005) Okulik, N., Jubert, A.H.: Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Des. 4(1), 17–30 (2005)
59.
Zurück zum Zitat Duan, Y.-A., Li, H.-B., Geng, Y., Wu, Y., Wang, G.-Y., Su, Z.-M.: Theoretical studies on the hole transport property of tetrathienoarene derivatives: the influence of the position of sulfur atom, substituent and \(\pi \)-conjugated core. Org. Electron. 15(2), 602–613 (2014)CrossRef Duan, Y.-A., Li, H.-B., Geng, Y., Wu, Y., Wang, G.-Y., Su, Z.-M.: Theoretical studies on the hole transport property of tetrathienoarene derivatives: the influence of the position of sulfur atom, substituent and \(\pi \)-conjugated core. Org. Electron. 15(2), 602–613 (2014)CrossRef
60.
Zurück zum Zitat Streitwieser, A.: Molecular Orbital Theory for Organic Chemists. Pioneers of Quantum Chemistry, pp. 275–300. ACS Publications (2013) Streitwieser, A.: Molecular Orbital Theory for Organic Chemists. Pioneers of Quantum Chemistry, pp. 275–300. ACS Publications (2013)
61.
Zurück zum Zitat Jones, R.N.: The ultraviolet absorption spectra of anthracene derivatives. Chem. Rev. 41(2), 353–371 (1947)MathSciNetCrossRef Jones, R.N.: The ultraviolet absorption spectra of anthracene derivatives. Chem. Rev. 41(2), 353–371 (1947)MathSciNetCrossRef
62.
Zurück zum Zitat Wan, J., Hada, M., Ehara, M., Nakatsuji, H.: Electronic excitation spectrum of thiophene studied by symmetry-adapted cluster configuration interaction method. J. Chem. Phys. 114(2), 842–850 (2001)CrossRef Wan, J., Hada, M., Ehara, M., Nakatsuji, H.: Electronic excitation spectrum of thiophene studied by symmetry-adapted cluster configuration interaction method. J. Chem. Phys. 114(2), 842–850 (2001)CrossRef
63.
Zurück zum Zitat Kravets, V., Grigorenko, A., Nair, R., Blake, P., Anissimova, S., Novoselov, K., Geim, A.: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81(15), 155413 (2010)CrossRef Kravets, V., Grigorenko, A., Nair, R., Blake, P., Anissimova, S., Novoselov, K., Geim, A.: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81(15), 155413 (2010)CrossRef
64.
Zurück zum Zitat Palenzuela, Js, Viñuales, A., Odriozola, I., Cabañero, Gn, Grande, H.J., Ruiz, V.: Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 6(16), 14562–14567 (2014)CrossRef Palenzuela, Js, Viñuales, A., Odriozola, I., Cabañero, Gn, Grande, H.J., Ruiz, V.: Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 6(16), 14562–14567 (2014)CrossRef
65.
Zurück zum Zitat You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27(24), 3632–3638 (2015)CrossRef You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27(24), 3632–3638 (2015)CrossRef
66.
Zurück zum Zitat Kim, S.-Y., Lee, J.-H., Shim, H.-S., Kim, J.-J.: Optical analysis of organic photovoltaic cells incorporating graphene as a transparent electrode. Org. Electron. 14(6), 1496–1503 (2013)CrossRef Kim, S.-Y., Lee, J.-H., Shim, H.-S., Kim, J.-J.: Optical analysis of organic photovoltaic cells incorporating graphene as a transparent electrode. Org. Electron. 14(6), 1496–1503 (2013)CrossRef
67.
Zurück zum Zitat Chang, D.W., Choi, H.-J., Filer, A., Baek, J.-B.: Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). J. Mater. Chem. A 2(31), 12136–12149 (2014)CrossRef Chang, D.W., Choi, H.-J., Filer, A., Baek, J.-B.: Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). J. Mater. Chem. A 2(31), 12136–12149 (2014)CrossRef
68.
Zurück zum Zitat Lee, J.H., Yoon, S., Ko, M.S., Lee, N., Hwang, I., Lee, M.J.: Improved performance of organic photovoltaic devices by doping F4TCNQ onto solution-processed graphene as a hole transport layer. Org. Electron. 30, 302–311 (2016)CrossRef Lee, J.H., Yoon, S., Ko, M.S., Lee, N., Hwang, I., Lee, M.J.: Improved performance of organic photovoltaic devices by doping F4TCNQ onto solution-processed graphene as a hole transport layer. Org. Electron. 30, 302–311 (2016)CrossRef
69.
Zurück zum Zitat Huang, X., Guo, H., Yang, J., Wang, K., Niu, X., Liu, X.: Moderately reduced graphene oxide/PEDOT: PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells. Org. Electron. 39, 288–295 (2016) Huang, X., Guo, H., Yang, J., Wang, K., Niu, X., Liu, X.: Moderately reduced graphene oxide/PEDOT: PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells. Org. Electron. 39, 288–295 (2016)
70.
Zurück zum Zitat Bi, H., Huang, F., Liang, J., Tang, Y., Lü, X., Xie, X., Jiang, M.: Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. 21(43), 17366–17370 (2011)CrossRef Bi, H., Huang, F., Liang, J., Tang, Y., Lü, X., Xie, X., Jiang, M.: Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. 21(43), 17366–17370 (2011)CrossRef
Metadaten
Titel
On the optoelectronic properties of non-covalently functionalized graphene for solar cell application
verfasst von
Rihab Chouk
Manel Bergaoui
Mohamed Khalfaoui
Publikationsdatum
06.03.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1149-1

Weitere Artikel der Ausgabe 2/2018

Journal of Computational Electronics 2/2018 Zur Ausgabe

Neuer Inhalt