Skip to main content
Erschienen in:

01.10.2024

On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid

verfasst von: Jamal El Amrani, Tarik Amtout, Mustapha Er-Riani, Aadil Lahrouz, Adel Settati

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel vertieft sich in die mathematische Analyse von Grenzschichtströmen für leistungsrechtliche Flüssigkeiten und betont die Verwendung der Falkner-Skan-Formulierung. Es untersucht die Existenz und Einzigartigkeit selbstähnlicher Lösungen, wobei Crocco-Variablen und Vernetzungsansätze zum Einsatz kommen. Die Studie umfasst auch asymptotische Verhaltensanalysen für Flüssigkeiten zur Scherverdünnung und Scherverdickung, die wertvolle Einblicke in die Dynamik der Grenzschicht bieten. Die Forschung zeichnet sich besonders durch ihre rigorose mathematische Behandlung und praktische Implikationen für das Verständnis komplexer Flüssigkeitsströme aus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Astin J, Jones RS, Lockyer P (1973) Boundary-layers in Non-Newtonian fluids. J Mec 12:527–539 Astin J, Jones RS, Lockyer P (1973) Boundary-layers in Non-Newtonian fluids. J Mec 12:527–539
2.
Zurück zum Zitat Astarita G, Marrucci G (1974) Principles of Non-Newtonian fluid mechanics. McGraw-Hill, New York Astarita G, Marrucci G (1974) Principles of Non-Newtonian fluid mechanics. McGraw-Hill, New York
3.
Zurück zum Zitat Bohme H (1987) Non-Newtonian fluid mechanics. Series in applied mathematics and mechanics. North-Holland, Amsterdam Bohme H (1987) Non-Newtonian fluid mechanics. Series in applied mathematics and mechanics. North-Holland, Amsterdam
4.
Zurück zum Zitat Denier JP, Dabrowski P (2004) On the boundary-layer equations for power-law fluids. Proc R Soc Lond A 460:3143–3158MathSciNet Denier JP, Dabrowski P (2004) On the boundary-layer equations for power-law fluids. Proc R Soc Lond A 460:3143–3158MathSciNet
5.
Zurück zum Zitat Schowalter WR (1960) The application of boundary-layer theory to power-law pseudoplastic fluids: similar solutions. AIChE J 6:24–28 Schowalter WR (1960) The application of boundary-layer theory to power-law pseudoplastic fluids: similar solutions. AIChE J 6:24–28
6.
Zurück zum Zitat Schlichting H, Gersten K (2000) Boundary layer theory, 8th revised and enlarged edition. Springer, Berlin Schlichting H, Gersten K (2000) Boundary layer theory, 8th revised and enlarged edition. Springer, Berlin
7.
Zurück zum Zitat Kudenatti RB, Sandhya L, Bujurke NM (2022) Numerical solution of shear-thinning and shear-thickening boundary-layer flow for Carreau fluid over a moving wedge. Eng Comput 38:523–538 Kudenatti RB, Sandhya L, Bujurke NM (2022) Numerical solution of shear-thinning and shear-thickening boundary-layer flow for Carreau fluid over a moving wedge. Eng Comput 38:523–538
8.
Zurück zum Zitat Pavlov KB, Fedotov IA, Shakhorin AP (1981) On the structure of laminar boundary layer in non-Newtonian dilatant fluids. Izvest Akad Nauk SSSR Mekh (Trans Fluid Mech Gases) 4:142–145 Pavlov KB, Fedotov IA, Shakhorin AP (1981) On the structure of laminar boundary layer in non-Newtonian dilatant fluids. Izvest Akad Nauk SSSR Mekh (Trans Fluid Mech Gases) 4:142–145
9.
Zurück zum Zitat Filipussi D, Gratton J, Minotti F (2001) The self-similar laminar boundary layer of power-law Non-Newtonian fluids. Il Nuovo Cimento B 116(4):393–402 Filipussi D, Gratton J, Minotti F (2001) The self-similar laminar boundary layer of power-law Non-Newtonian fluids. Il Nuovo Cimento B 116(4):393–402
10.
Zurück zum Zitat Teipel I (1974) Discontinuities in boundary layer problems of power-law fluids. Mech Res Commun 1:269–273 Teipel I (1974) Discontinuities in boundary layer problems of power-law fluids. Mech Res Commun 1:269–273
11.
Zurück zum Zitat Balmforth NJ, Craster RV, Hewitt DR, Hormozi S, Maleki A (2017) Viscoplastic boundary layers. J Fluid Mech 813:929–954MathSciNet Balmforth NJ, Craster RV, Hewitt DR, Hormozi S, Maleki A (2017) Viscoplastic boundary layers. J Fluid Mech 813:929–954MathSciNet
12.
Zurück zum Zitat Boujlel J, Maillard M, Lindner A, Ovarlez G, Chatea X, Coussot P (2012) Boundary layer in pastes: displacement of a long object through a yield stress fluid. J Rheol 56:1083–1108 Boujlel J, Maillard M, Lindner A, Ovarlez G, Chatea X, Coussot P (2012) Boundary layer in pastes: displacement of a long object through a yield stress fluid. J Rheol 56:1083–1108
13.
Zurück zum Zitat Shehzad SA, Ahmed M, Rauf A (2021) Nonsimilar boundary layer flow of Cross fluid induced by a heated stretched sheet. Heat Transf 50:7065–7078 Shehzad SA, Ahmed M, Rauf A (2021) Nonsimilar boundary layer flow of Cross fluid induced by a heated stretched sheet. Heat Transf 50:7065–7078
14.
Zurück zum Zitat Zhang Z (2014) A two-point boundary-value problem arising in boundary-layer theory. J Math Anal Appl 417:361–375MathSciNet Zhang Z (2014) A two-point boundary-value problem arising in boundary-layer theory. J Math Anal Appl 417:361–375MathSciNet
15.
Zurück zum Zitat Guedda M, Kersner R (2011) Non-Newtonian pseudoplastic fluids: analytical results and exact solutions Author links open overlay panel. J Non-Newton Fluid Mech 46(7):949–957 Guedda M, Kersner R (2011) Non-Newtonian pseudoplastic fluids: analytical results and exact solutions Author links open overlay panel. J Non-Newton Fluid Mech 46(7):949–957
16.
Zurück zum Zitat Zhang Z (2009) Self-similar solutions of the magnetohydrodynamic boundary layer system for a non-dilatable fluid. Z Angew Math Phys 60:621–639MathSciNet Zhang Z (2009) Self-similar solutions of the magnetohydrodynamic boundary layer system for a non-dilatable fluid. Z Angew Math Phys 60:621–639MathSciNet
17.
Zurück zum Zitat Guedda M (2005) Similarity solutions of differential equations for boundary-layer approximations in porous media. J Appl Math Phys 56:749–762MathSciNet Guedda M (2005) Similarity solutions of differential equations for boundary-layer approximations in porous media. J Appl Math Phys 56:749–762MathSciNet
18.
Zurück zum Zitat Falkner VM, Skan SW (1931) Some approximate solutions of the boundary-layer equations. Philos Mag 12:865–896 Falkner VM, Skan SW (1931) Some approximate solutions of the boundary-layer equations. Philos Mag 12:865–896
19.
Zurück zum Zitat Lee SY, Ames WF (1966) Similarity solutions for Non-Newtonian fluids. AIChE J 12(4):700–708 Lee SY, Ames WF (1966) Similarity solutions for Non-Newtonian fluids. AIChE J 12(4):700–708
20.
Zurück zum Zitat Amtout T, Cheikhi A, Er-Riani M, El Jarroudi M (2022) Preliminary group classification of the boundary-layer equations of a thermodependent fluid. Math Methods Appl Sci 45(16):9809–9825MathSciNet Amtout T, Cheikhi A, Er-Riani M, El Jarroudi M (2022) Preliminary group classification of the boundary-layer equations of a thermodependent fluid. Math Methods Appl Sci 45(16):9809–9825MathSciNet
21.
Zurück zum Zitat Goldstein S (1939) A note on the boundary layer equations. Proc Camb Philos Soc 35(2):338–340 Goldstein S (1939) A note on the boundary layer equations. Proc Camb Philos Soc 35(2):338–340
22.
Zurück zum Zitat Guedda M, Hammouch Z (2006) On similarity and pseudo-similarity solutions of Falkner–Skan boundary layers. Fluid Dyn Res 38(4):211–223MathSciNet Guedda M, Hammouch Z (2006) On similarity and pseudo-similarity solutions of Falkner–Skan boundary layers. Fluid Dyn Res 38(4):211–223MathSciNet
23.
Zurück zum Zitat Tritton DJ (2012) Physical fluid dynamics. The Modern University in Physics Series, Springer Science & Business Media Tritton DJ (2012) Physical fluid dynamics. The Modern University in Physics Series, Springer Science & Business Media
24.
Zurück zum Zitat De Santi F, Scarsoglio S, Criminale William O, Tordella D (2015) Parametric perturbative study of the supercritical cross-flow boundary layer. Int J Heat Fluid Flow 52:64–71 De Santi F, Scarsoglio S, Criminale William O, Tordella D (2015) Parametric perturbative study of the supercritical cross-flow boundary layer. Int J Heat Fluid Flow 52:64–71
25.
Zurück zum Zitat Acrivos A, Shah MJ, Petersen EE (1960) Momentum and heat transfer in laminar boundary-layer flows of Non-Newtonian fluids past external surfaces. AIChE J 6:312–317 Acrivos A, Shah MJ, Petersen EE (1960) Momentum and heat transfer in laminar boundary-layer flows of Non-Newtonian fluids past external surfaces. AIChE J 6:312–317
26.
Zurück zum Zitat Oleinik JO, Samokhin VN (1999) Mathematical models of boundary-layer theory. Chapman and Hall, London Oleinik JO, Samokhin VN (1999) Mathematical models of boundary-layer theory. Chapman and Hall, London
27.
Zurück zum Zitat Schowalter WR (1978) Mechanics of Non-Newtonian fluids. Pergamon Press, Oxford Schowalter WR (1978) Mechanics of Non-Newtonian fluids. Pergamon Press, Oxford
28.
Zurück zum Zitat Tanner RI (2000) Engineering rheology. Oxford University Press, Oxford Tanner RI (2000) Engineering rheology. Oxford University Press, Oxford
29.
Zurück zum Zitat Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge
30.
Zurück zum Zitat Kudenatti RB, Misbah NE, Bharathi MC (2021) Boundary-layer flow of the power-law fluid over a moving wedge: a linear stability analysis. Eng Comput 37:1807–1820 Kudenatti RB, Misbah NE, Bharathi MC (2021) Boundary-layer flow of the power-law fluid over a moving wedge: a linear stability analysis. Eng Comput 37:1807–1820
31.
Zurück zum Zitat Al-Ashhab S (2020) Properties of boundary-layer flow solutions for non-Newtonian fluids with non-linear terms of first and second-order derivatives. J Eng Math 123:29–39MathSciNet Al-Ashhab S (2020) Properties of boundary-layer flow solutions for non-Newtonian fluids with non-linear terms of first and second-order derivatives. J Eng Math 123:29–39MathSciNet
32.
Zurück zum Zitat Homann F (1936) Der Einflub grober Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Z Angew Math Phys 16:153–164 Homann F (1936) Der Einflub grober Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Z Angew Math Phys 16:153–164
33.
Zurück zum Zitat Zhang Z, Wang J, Shi W (2004) A boundary layer problem arising in gravity-driven laminar film flow of power-law fluids along vertical walls. Z Angew Math Phys 55:769–780MathSciNet Zhang Z, Wang J, Shi W (2004) A boundary layer problem arising in gravity-driven laminar film flow of power-law fluids along vertical walls. Z Angew Math Phys 55:769–780MathSciNet
34.
Zurück zum Zitat Nachman A, Taliaferro S (1979) Mass transfer into boundary-layers for power-law fluids. Proc R Soc Lond A 365:313–326 Nachman A, Taliaferro S (1979) Mass transfer into boundary-layers for power-law fluids. Proc R Soc Lond A 365:313–326
35.
Zurück zum Zitat Wei DM, Al-Ashab S (2014) Similarity solutions for non-Newtonian power-law fluid flow. Appl Math Mech Engl Ed 35(9):1155–1166MathSciNet Wei DM, Al-Ashab S (2014) Similarity solutions for non-Newtonian power-law fluid flow. Appl Math Mech Engl Ed 35(9):1155–1166MathSciNet
36.
Zurück zum Zitat Al-Ashhab S (2019) Asymptotic behavior and existence of similarity solutions for a boundary layer flow problem. Kuwait J Sci 46(2):13–20MathSciNet Al-Ashhab S (2019) Asymptotic behavior and existence of similarity solutions for a boundary layer flow problem. Kuwait J Sci 46(2):13–20MathSciNet
37.
Zurück zum Zitat Guedda M (2009) Boundary-layer equations for a power-law shear driven flow over a plane surface of Non-Newtonian fluids. Acta Mech 202:205–211 Guedda M (2009) Boundary-layer equations for a power-law shear driven flow over a plane surface of Non-Newtonian fluids. Acta Mech 202:205–211
38.
Zurück zum Zitat Zheng L, Su X, Zhang X (2005) Similarity solutions for boundary-layer flow on a moving surface in an otherwise quiescent fluid medium. Int J Pure Appl Math 19:541–552MathSciNet Zheng L, Su X, Zhang X (2005) Similarity solutions for boundary-layer flow on a moving surface in an otherwise quiescent fluid medium. Int J Pure Appl Math 19:541–552MathSciNet
39.
Zurück zum Zitat Zheng L, Zhang X, He J (2007) Existence and estimate of positive solutions to a non-linear singular boundary-value problem in the theory of dilatant Non-Newtonian fluids. Math Comput Model 45:387–393 Zheng L, Zhang X, He J (2007) Existence and estimate of positive solutions to a non-linear singular boundary-value problem in the theory of dilatant Non-Newtonian fluids. Math Comput Model 45:387–393
40.
Zurück zum Zitat Weyl H (1942) On the differential equations of the simplest boundary-layer problems. Ann Math 43(2):381–407MathSciNet Weyl H (1942) On the differential equations of the simplest boundary-layer problems. Ann Math 43(2):381–407MathSciNet
41.
Zurück zum Zitat Coppel WA (1960) On a differential equation of boundary-layer theory. Philos Trans R Soc Lond A 253:101–136MathSciNet Coppel WA (1960) On a differential equation of boundary-layer theory. Philos Trans R Soc Lond A 253:101–136MathSciNet
42.
Zurück zum Zitat Hartman P (1964) Ordinary differential equations, 2nd edn. SIAM, Philadelphia Hartman P (1964) Ordinary differential equations, 2nd edn. SIAM, Philadelphia
43.
Zurück zum Zitat Hasting SP (1971) An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan. J Differ Equ 9:580–590MathSciNet Hasting SP (1971) An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan. J Differ Equ 9:580–590MathSciNet
44.
Zurück zum Zitat Hasting SP, Siegel S (1972) On some solutions of the Falkner–Skan equation. Mathematika 19:76–83MathSciNet Hasting SP, Siegel S (1972) On some solutions of the Falkner–Skan equation. Mathematika 19:76–83MathSciNet
45.
Zurück zum Zitat Nachman A, Callegari A (1980) A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids. SIAM J Appl Math 38(2):275–281MathSciNet Nachman A, Callegari A (1980) A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids. SIAM J Appl Math 38(2):275–281MathSciNet
46.
Zurück zum Zitat Crocco L (1946) Lo strato laminare nei gas. Mon. Sci. Aer, Roma Crocco L (1946) Lo strato laminare nei gas. Mon. Sci. Aer, Roma
47.
Zurück zum Zitat Nickel K, Kirchgässner K (1979) The Crocco transformation for the three-dimensional Prandtl boundary-layer equations. Math Methods Appl Sci 1(4):445–452MathSciNet Nickel K, Kirchgässner K (1979) The Crocco transformation for the three-dimensional Prandtl boundary-layer equations. Math Methods Appl Sci 1(4):445–452MathSciNet
48.
Zurück zum Zitat Hussaini MY, Lakin WD (1986) Existence and non-uniqueness of similarity solutions of a boundary-layer problem. Q J Mech Appl Math 39(1):15–24 Hussaini MY, Lakin WD (1986) Existence and non-uniqueness of similarity solutions of a boundary-layer problem. Q J Mech Appl Math 39(1):15–24
49.
Zurück zum Zitat Soewono E, Vajravelu K, Mohapatra RN (1991) Existence and non-uniqueness of solutions of a singular nonlinear boundary-layer problem. J Math Anal Appl 159:251–270MathSciNet Soewono E, Vajravelu K, Mohapatra RN (1991) Existence and non-uniqueness of solutions of a singular nonlinear boundary-layer problem. J Math Anal Appl 159:251–270MathSciNet
50.
Zurück zum Zitat Wang J, Gao W, Zhang Z (1999) Singular nonlinear boundary-value problems arising in boundary-layer theory. J Math Anal Appl 233:246–256MathSciNet Wang J, Gao W, Zhang Z (1999) Singular nonlinear boundary-value problems arising in boundary-layer theory. J Math Anal Appl 233:246–256MathSciNet
51.
Zurück zum Zitat Stewartson K (1964) The theory of laminar boundary-layer in compressible fluids. Oxford University Press, London Stewartson K (1964) The theory of laminar boundary-layer in compressible fluids. Oxford University Press, London
52.
Zurück zum Zitat Benlahsen M, Guedda M, Kersner R (2008) The generalized Blasius equation revisited. Math Comput Model 47:1063–1076MathSciNet Benlahsen M, Guedda M, Kersner R (2008) The generalized Blasius equation revisited. Math Comput Model 47:1063–1076MathSciNet
Metadaten
Titel
On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid
verfasst von
Jamal El Amrani
Tarik Amtout
Mustapha Er-Riani
Aadil Lahrouz
Adel Settati
Publikationsdatum
01.10.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2024
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-024-10394-8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.