Skip to main content

2021 | OriginalPaper | Buchkapitel

On the Role of Crystallographic Anisotropy and Texture in Damage Tolerance of Magnesium and Its Alloys

verfasst von : Shahmeer Baweja, Padmeya P. Indurkar, Shailendra P. Joshi

Erschienen in: Magnesium Technology 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The remarkable crystallographic plastic anisotropy of magnesium and its alloys reflects in its polycrystal response via texture. While texture-strength linkages have been studied, the role of textural variability on damage remains elusive. The challenge is to obtain relevant metrics that relate the net plastic anisotropy to macroscopic modes of damage. A possible approach is to adopt mechanistic descriptions of the damage. Motivated by the recent experimental and theoretical works in this direction, here we appeal to the Hill yield function to characterize the net plastic anisotropy of polycrystalline magnesium via the Hill plastic anisotropy tensor \({\mathbb{h}}\). Metrics based on the components of \({\mathbb{h}}\) offer a way to predict damage as a possible damage predictor. Using the results from our recent extensive three-dimensional crystal plasticity simulations for a wide range of textures, we map the net plastic anisotropy on to the coefficients of \({\mathbb{h}}\), separately for the tensile and compressive responses. Metrics based on these coefficients serve as indicators for the propensity of textured polycrystals to damage by: (i) porosity evolution, or (ii) shear instability. An attempt is made to understand the potential roles textural variability and crystallographic plastic anisotropy play in damage under different loading conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Van der Giessen, E., & Needleman, A. (2002). Micromechanics simulations of fracture. Annual Review of Materials Research, 32(1), 141–162.CrossRef Van der Giessen, E., & Needleman, A. (2002). Micromechanics simulations of fracture. Annual Review of Materials Research, 32(1), 141–162.CrossRef
2.
Zurück zum Zitat Besson, J. (2010). Continuum models of ductile fracture: a review. International Journal of Damage Mechanics, 19(1), 3–52.CrossRef Besson, J. (2010). Continuum models of ductile fracture: a review. International Journal of Damage Mechanics, 19(1), 3–52.CrossRef
3.
Zurück zum Zitat Christian, J. W., & Mahajan, S. (1995). Deformation twinning. Progress in Materials Science, 39(1-2), 1–157.CrossRef Christian, J. W., & Mahajan, S. (1995). Deformation twinning. Progress in Materials Science, 39(1-2), 1–157.CrossRef
4.
Zurück zum Zitat Barnett, M. R. (2007). Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Materials Science and Engineering: A, 464(1-2), 1–7. Barnett, M. R. (2007). Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Materials Science and Engineering: A, 464(1-2), 1–7.
5.
Zurück zum Zitat Barnett, M. R. (2007). Twinning and the ductility of magnesium alloys: Part II: “Contraction” twins. Materials Science and Engineering: A, 464(1–2), 8–16. Barnett, M. R. (2007). Twinning and the ductility of magnesium alloys: Part II: “Contraction” twins. Materials Science and Engineering: A, 464(1–2), 8–16.
6.
Zurück zum Zitat Crépin, J., Bretheau, T., & Caldemaison, D. (1996). Cavity growth and rupture of β-treated zirconium: a crystallographic model. Acta Materialia, 44(12), 4927–4935.CrossRef Crépin, J., Bretheau, T., & Caldemaison, D. (1996). Cavity growth and rupture of β-treated zirconium: a crystallographic model. Acta Materialia, 44(12), 4927–4935.CrossRef
7.
Zurück zum Zitat Kaushik, V., Narasimhan, R., & Mishra, R. K. (2014). Experimental study of fracture behavior of magnesium single crystals. Materials Science and Engineering: A, 590, 174–185.CrossRef Kaushik, V., Narasimhan, R., & Mishra, R. K. (2014). Experimental study of fracture behavior of magnesium single crystals. Materials Science and Engineering: A, 590, 174–185.CrossRef
8.
Zurück zum Zitat Nemcko, M. J., Li, J., & Wilkinson, D. S. (2016). Effects of void band orientation and crystallographic anisotropy on void growth and coalescence. Journal of the Mechanics and Physics of Solids, 95, 270–283.CrossRef Nemcko, M. J., Li, J., & Wilkinson, D. S. (2016). Effects of void band orientation and crystallographic anisotropy on void growth and coalescence. Journal of the Mechanics and Physics of Solids, 95, 270–283.CrossRef
9.
Zurück zum Zitat Huez, J., Helbert, A. L., Feaugas, X., Guillot, I., & Clavel, M. (1998). Damage process in commercially pure α-titanium alloy without (Ti40) and with (Ti40-H) hydrides. Metallurgical and Materials Transactions A, 29(6), 1615–1628.CrossRef Huez, J., Helbert, A. L., Feaugas, X., Guillot, I., & Clavel, M. (1998). Damage process in commercially pure α-titanium alloy without (Ti40) and with (Ti40-H) hydrides. Metallurgical and Materials Transactions A, 29(6), 1615–1628.CrossRef
10.
Zurück zum Zitat Caré, S., & Zaoui, A. (1996). Cavitation at triple nodes in α-zirconium polycrystals. Acta Materialia, 44(4), 1323–1336.CrossRef Caré, S., & Zaoui, A. (1996). Cavitation at triple nodes in α-zirconium polycrystals. Acta Materialia, 44(4), 1323–1336.CrossRef
11.
Zurück zum Zitat Prasad, N. S., Kumar, N. N., Narasimhan, R., & Suwas, S. (2015). Fracture behavior of magnesium alloys–role of tensile twinning. Acta Materialia, 94, 281–293.CrossRef Prasad, N. S., Kumar, N. N., Narasimhan, R., & Suwas, S. (2015). Fracture behavior of magnesium alloys–role of tensile twinning. Acta Materialia, 94, 281–293.CrossRef
12.
Zurück zum Zitat Ray, A. K., & Wilkinson, D. S. (2016). The effect of microstructure on damage and fracture in AZ31B and ZEK100 magnesium alloys. Materials Science and Engineering: A, 658, 33–41.CrossRef Ray, A. K., & Wilkinson, D. S. (2016). The effect of microstructure on damage and fracture in AZ31B and ZEK100 magnesium alloys. Materials Science and Engineering: A, 658, 33–41.CrossRef
13.
Zurück zum Zitat Revil-Baudard, B., Cazacu, O., Flater, P., Chandola, N., & Alves, J. L. (2016). Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling. Journal of the Mechanics and Physics of Solids, 88, 100–122.CrossRef Revil-Baudard, B., Cazacu, O., Flater, P., Chandola, N., & Alves, J. L. (2016). Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling. Journal of the Mechanics and Physics of Solids, 88, 100–122.CrossRef
14.
Zurück zum Zitat Kondori, B., & Benzerga, A. A. (2014). Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31. Metallurgical and Materials Transactions A, 45(8), 3292–3307.CrossRef Kondori, B., & Benzerga, A. A. (2014). Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31. Metallurgical and Materials Transactions A, 45(8), 3292–3307.CrossRef
15.
Zurück zum Zitat Kondori, B., & Benzerga, A. A. (2015). On the notch ductility of a magnesium-rare earth alloy. Materials Science and Engineering: A, 647, 74–83.CrossRef Kondori, B., & Benzerga, A. A. (2015). On the notch ductility of a magnesium-rare earth alloy. Materials Science and Engineering: A, 647, 74–83.CrossRef
16.
Zurück zum Zitat Steglich, D., & Morgeneyer, T. F. (2013). Failure of magnesium sheets under monotonic loading: 3d examination of fracture mode and mechanisms. International Journal of Fracture, 183(1), 105–112.CrossRef Steglich, D., & Morgeneyer, T. F. (2013). Failure of magnesium sheets under monotonic loading: 3d examination of fracture mode and mechanisms. International Journal of Fracture, 183(1), 105–112.CrossRef
17.
Zurück zum Zitat Benzerga, A. A., Thomas, N., & Herrington, J. S. (2019). Plastic flow anisotropy drives shear fracture. Scientific reports, 9(1), 1–9.CrossRef Benzerga, A. A., Thomas, N., & Herrington, J. S. (2019). Plastic flow anisotropy drives shear fracture. Scientific reports, 9(1), 1–9.CrossRef
18.
Zurück zum Zitat Kondori, B., Morgeneyer, T. F., Helfen, L., & Benzerga, A. A. (2018). Void growth and coalescence in a magnesium alloy studied by synchrotron radiation laminography. Acta Materialia, 155, 80–94.CrossRef Kondori, B., Morgeneyer, T. F., Helfen, L., & Benzerga, A. A. (2018). Void growth and coalescence in a magnesium alloy studied by synchrotron radiation laminography. Acta Materialia, 155, 80–94.CrossRef
19.
Zurück zum Zitat Selvarajou, B., Joshi, S. P., & Benzerga, A. A. (2017). Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys. Acta Materialia, 127, 54–72.CrossRef Selvarajou, B., Joshi, S. P., & Benzerga, A. A. (2017). Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys. Acta Materialia, 127, 54–72.CrossRef
20.
Zurück zum Zitat Benzerga, A. A., & Besson, J. (2001). Plastic potentials for anisotropic porous solids. European Journal of Mechanics-A/Solids, 20(3), 397–434.CrossRef Benzerga, A. A., & Besson, J. (2001). Plastic potentials for anisotropic porous solids. European Journal of Mechanics-A/Solids, 20(3), 397–434.CrossRef
21.
Zurück zum Zitat Basu, S., Dogan, E., Kondori, B., Karaman, I., & Benzerga, A. A. (2017). Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia, 131, 349–362.CrossRef Basu, S., Dogan, E., Kondori, B., Karaman, I., & Benzerga, A. A. (2017). Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia, 131, 349–362.CrossRef
22.
Zurück zum Zitat Indurkar, P. P., Baweja, S., Perez, R., & Joshi, S. P. (2020). Predicting textural variability effects in the anisotropic plasticity and stability of hexagonal metals: Application to magnesium and its alloys. International Journal of Plasticity, 102762. Indurkar, P. P., Baweja, S., Perez, R., & Joshi, S. P. (2020). Predicting textural variability effects in the anisotropic plasticity and stability of hexagonal metals: Application to magnesium and its alloys. International Journal of Plasticity, 102762.
23.
Zurück zum Zitat Zhang, J., & Joshi, S. P. (2012). Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. Journal of the Mechanics and Physics of Solids, 60(5), 945–972.CrossRef Zhang, J., & Joshi, S. P. (2012). Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. Journal of the Mechanics and Physics of Solids, 60(5), 945–972.CrossRef
24.
Zurück zum Zitat Indurkar, PP (2020). On the multiscale mechanics of deformation, stability and damage in magnesium. Ph.D. Thesis, National University of Singapore. Indurkar, PP (2020). On the multiscale mechanics of deformation, stability and damage in magnesium. Ph.D. Thesis, National University of Singapore.
25.
Zurück zum Zitat Benzerga, A. A., Besson, J., & Pineau, A. (2004). Anisotropic ductile fracture: Part II: theory. Acta Materialia, 52(15), 4639–4650.CrossRef Benzerga, A. A., Besson, J., & Pineau, A. (2004). Anisotropic ductile fracture: Part II: theory. Acta Materialia, 52(15), 4639–4650.CrossRef
26.
Zurück zum Zitat Benzerga, A. A. (2019). A Theory for Designing Ductile Materials with Anisotropy. In Magnesium Technology 2019 (pp. 359–362). Springer, Cham. Benzerga, A. A. (2019). A Theory for Designing Ductile Materials with Anisotropy. In Magnesium Technology 2019 (pp. 359–362). Springer, Cham.
27.
Zurück zum Zitat Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281–297. Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281–297.
28.
Zurück zum Zitat Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424–483.CrossRef Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424–483.CrossRef
29.
Zurück zum Zitat Selvarajou, B., Joshi, S. P., & Benzerga, A. A. (2019). Void growth and coalescence in hexagonal close packed crystals. Journal of the Mechanics and Physics of Solids, 125, 198–224.CrossRef Selvarajou, B., Joshi, S. P., & Benzerga, A. A. (2019). Void growth and coalescence in hexagonal close packed crystals. Journal of the Mechanics and Physics of Solids, 125, 198–224.CrossRef
Metadaten
Titel
On the Role of Crystallographic Anisotropy and Texture in Damage Tolerance of Magnesium and Its Alloys
verfasst von
Shahmeer Baweja
Padmeya P. Indurkar
Shailendra P. Joshi
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65528-0_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.