Skip to main content

2020 | OriginalPaper | Buchkapitel

On the Self-organizing Migrating Algorithm Comparison by Means of Centrality Measures

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article we continue in our research which combines three different areas - swarm and evolutionary algorithms, networks and coupled map lattices control. Main aim of this article is to compare networks obtained from best and worst self-organizing migrating algorithm runs. All experiments were done on well known CEC 2014 benchmark functions. For each selected function we picked 30 best and 30 worst runs, converted each run into a network, counted selected properties and compared the results. All obtained results are reported in this article.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bagler, G.: Analysis of the airport network of India as a complex weighted network. Phys. A: Stat. Mech. Appl. 387(12), 2972–2980 (2008)CrossRef Bagler, G.: Analysis of the airport network of India as a complex weighted network. Phys. A: Stat. Mech. Appl. 387(12), 2972–2980 (2008)CrossRef
2.
Zurück zum Zitat Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A: Stat. Mech. Appl. 281(1–4), 69–77 (2000)CrossRef Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A: Stat. Mech. Appl. 281(1–4), 69–77 (2000)CrossRef
3.
Zurück zum Zitat Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Nat. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004)CrossRef Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Nat. Acad. Sci. U.S.A. 101(11), 3747–3752 (2004)CrossRef
4.
Zurück zum Zitat Barrat, A., Barthelemy, M., Vespignani, A.: The architecture of complex weighted networks: measurements and models. In: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science, pp. 67–92. World Scientific (2007) Barrat, A., Barthelemy, M., Vespignani, A.: The architecture of complex weighted networks: measurements and models. In: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science, pp. 67–92. World Scientific (2007)
5.
Zurück zum Zitat Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRef Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRef
6.
Zurück zum Zitat Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRef Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRef
7.
Zurück zum Zitat Davendra, D., Zelinka, I., et al.: Self-organizing migrating algorithm. In: New Optimization Techniques in Engineering (2016) Davendra, D., Zelinka, I., et al.: Self-organizing migrating algorithm. In: New Optimization Techniques in Engineering (2016)
8.
9.
Zurück zum Zitat Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRef Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRef
10.
Zurück zum Zitat Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)CrossRef Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)CrossRef
11.
Zurück zum Zitat Krömer, P., Kudělka, M., Senkerik, R., Pluhacek, M.: Differential evolution with preferential interaction network. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1916–1923. IEEE (2017) Krömer, P., Kudělka, M., Senkerik, R., Pluhacek, M.: Differential evolution with preferential interaction network. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1916–1923. IEEE (2017)
12.
Zurück zum Zitat Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2013) Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2013)
13.
14.
Zurück zum Zitat Newman, M.E.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)MathSciNetCrossRef Newman, M.E.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)MathSciNetCrossRef
15.
Zurück zum Zitat Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)CrossRef Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)CrossRef
16.
Zurück zum Zitat O’Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.B.: Analysis and visualization of network data using jung. J. Stat. Softw. 10(2), 1–35 (2005) O’Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.B.: Analysis and visualization of network data using jung. J. Stat. Softw. 10(2), 1–35 (2005)
17.
Zurück zum Zitat Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)CrossRef Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)CrossRef
18.
Zurück zum Zitat Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRef Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRef
19.
Zurück zum Zitat Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2017) Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2017)
20.
Zurück zum Zitat Soh, H., Lim, S., Zhang, T., Fu, X., Lee, G.K.K., Hung, T.G.G., Di, P., Prakasam, S., Wong, L.: Weighted complex network analysis of travel routes on the singapore public transportation system. Phys. A: Stat. Mech. Appl. 389(24), 5852–5863 (2010)CrossRef Soh, H., Lim, S., Zhang, T., Fu, X., Lee, G.K.K., Hung, T.G.G., Di, P., Prakasam, S., Wong, L.: Weighted complex network analysis of travel routes on the singapore public transportation system. Phys. A: Stat. Mech. Appl. 389(24), 5852–5863 (2010)CrossRef
21.
Zurück zum Zitat Tomaszek, L., Zelinka, I.: On performance improvement of the soma swarm based algorithm and its complex network duality. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4494–4500. IEEE (2016) Tomaszek, L., Zelinka, I.: On performance improvement of the soma swarm based algorithm and its complex network duality. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4494–4500. IEEE (2016)
22.
Zurück zum Zitat Tomaszek, L., Zelinka, I.: On static control of swarm systems. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017) Tomaszek, L., Zelinka, I.: On static control of swarm systems. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)
23.
Zurück zum Zitat Tomaszek, L., Zelinka, I.: Conversion of soma algorithm into complex networks. In: Evolutionary Algorithms, Swarm Dynamics and Complex Networks, pp. 101–114. Springer (2018) Tomaszek, L., Zelinka, I.: Conversion of soma algorithm into complex networks. In: Evolutionary Algorithms, Swarm Dynamics and Complex Networks, pp. 101–114. Springer (2018)
24.
Zurück zum Zitat Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRef Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRef
25.
Zurück zum Zitat Zelinka, I.: Investigation on evolutionary deterministic chaos control-extended study. Heuristica 1000, 2 (2005) Zelinka, I.: Investigation on evolutionary deterministic chaos control-extended study. Heuristica 1000, 2 (2005)
26.
Zurück zum Zitat Zelinka, I.: SOMA–self-organizing migrating algorithm. In: Self-Organizing Migrating Algorithm, pp. 3–49. Springer (2016) Zelinka, I.: SOMA–self-organizing migrating algorithm. In: Self-Organizing Migrating Algorithm, pp. 3–49. Springer (2016)
27.
Zurück zum Zitat Zelinka, I.: On mutual relations amongst evolutionary algorithm dynamics and its hidden complex network structures: an overview and recent advances. In: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications, pp. 215–239. IGI Global (2017) Zelinka, I.: On mutual relations amongst evolutionary algorithm dynamics and its hidden complex network structures: an overview and recent advances. In: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications, pp. 215–239. IGI Global (2017)
28.
Zurück zum Zitat Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos Solitons Fractals 40(1), 111–129 (2009)CrossRef Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos Solitons Fractals 40(1), 111–129 (2009)CrossRef
29.
Zurück zum Zitat Zelinka, I., Tomaszek, L., Kojecky, L.: On evolutionary dynamics modeled by ant algorithm. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 193–198. IEEE (2016) Zelinka, I., Tomaszek, L., Kojecky, L.: On evolutionary dynamics modeled by ant algorithm. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 193–198. IEEE (2016)
Metadaten
Titel
On the Self-organizing Migrating Algorithm Comparison by Means of Centrality Measures
verfasst von
Lukas Tomaszek
Patrik Lycka
Ivan Zelinka
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-14907-9_33

Neuer Inhalt