Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.01.2020

On the smoothing parameter and last minimum of random orthogonal lattices

Zeitschrift:
Designs, Codes and Cryptography
Autoren:
Elena Kirshanova, Huyen Nguyen, Damien Stehlé, Alexandre Wallet
Wichtige Hinweise
Communicated by S. D. Galbraith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Let \(X \in {{\mathbb Z}}^{n \times m}\), with each entry independently and identically distributed from an integer Gaussian distribution. We consider the orthogonal lattice \(\varLambda ^\perp (X)\) of X, i.e., the set of vectors \(\mathbf {v}\in {{\mathbb Z}}^m\) such that \(X \mathbf {v}= \mathbf {0}\). In this work, we prove probabilistic upper bounds on the smoothing parameter and the \((m-n)\)-th minimum of \(\varLambda ^\perp (X)\). These bounds improve and the techniques build upon prior works of Agrawal et al. (Adv Cryptol 2013:97–116, 2013), and of Aggarwal and Regev (Chic J Theor Comput Sci 7:1–11, 2016).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise