Skip to main content
Erschienen in: Computational Mechanics 1/2022

11.04.2022 | Original Paper

On the stability of POD basis interpolation on Grassmann manifolds for parametric model order reduction

verfasst von: Orestis Friderikos, Emmanuel Baranger, Marc Olive, David Neron

Erschienen in: Computational Mechanics | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Proper Orthogonal Decomposition (POD) basis interpolation on Grassmann manifolds has been successfully applied to problems of parametric model order reduction (pMOR). In this work we address the necessary stability conditions for the interpolation, all defined from strong mathematical background. A first condition concerns the domain of definition of the logarithm map. Second, we show how the stability of interpolation can be lost if certain geometrical requirements are not satisfied by making a concrete elucidation of the local character of linearization. To this effect, we draw special attention to the Grassmannian exponential map and the optimal injectivity condition of this map, related to the cut–locus of Grassmann manifolds. From this, an explicit stability condition is established and can be directly used to determine the loss of injectivity in practical pMOR applications. A third stability condition is formulated when increasing the number p of POD modes, deduced from the principal angles of subspaces of different dimensions p. Definition of this condition leads to an understanding of the non-monotonic oscillatory behavior of the Reduced Order Model (ROM) error-norm with respect to the number of POD modes, and on the contrary, the well-behaved monotonic decrease of the error-norm in the two numerical examples presented herein. We have chosen to perform pMOR in hyperelastic structures using a non-intrusive approach for inserting the interpolated spatial POD ROM basis in a commercial FEM code. The accuracy is assessed by a posteriori error norms defined using the ROM FEM solution and its high-fidelity counterpart simulation. Numerical studies successfully ascertained and highlighted the implication of stability conditions which are general and can be applied to a variety of other linear or nonlinear problems involving parametrized ROMs generation based on POD basis interpolation on Grassmann manifolds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeCrossRef Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Henri T, Yvon J-P (2003) Convergence estimates of pod-galerkin methods for parabolic problems. IFIP conference on system modeling and optimization. Springer, New York, pp 295–306 Henri T, Yvon J-P (2003) Convergence estimates of pod-galerkin methods for parabolic problems. IFIP conference on system modeling and optimization. Springer, New York, pp 295–306
3.
Zurück zum Zitat Mosquera R, Hamdouni A, El Hamidi A, Allery C (2019) POD basis interpolation via inverse distance weighting on grassmann manifolds. Disc Contin Dyn Syst S 12(6):1743–1759MathSciNetMATH Mosquera R, Hamdouni A, El Hamidi A, Allery C (2019) POD basis interpolation via inverse distance weighting on grassmann manifolds. Disc Contin Dyn Syst S 12(6):1743–1759MathSciNetMATH
4.
Zurück zum Zitat Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fennicae, AI, 34 Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fennicae, AI, 34
5.
Zurück zum Zitat Loève M (1978) Probability theory, Vol. II, Graduate Texts in Mathematics, vol 46. Springer, New York Loève M (1978) Probability theory, Vol. II, Graduate Texts in Mathematics, vol 46. Springer, New York
6.
Zurück zum Zitat Golub GH, Loan CFV (1996) Matrix computations, vol 1, 3rd edn. JHU Press, BaltimoreMATH Golub GH, Loan CFV (1996) Matrix computations, vol 1, 3rd edn. JHU Press, BaltimoreMATH
7.
Zurück zum Zitat Jolliffe IT (2002) Principal component analysis, series: springer series in statistics, 2nd edn. Springer, New York Jolliffe IT (2002) Principal component analysis, series: springer series in statistics, 2nd edn. Springer, New York
8.
Zurück zum Zitat Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisc Rev Comput Stat 2(4):433–459CrossRef Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisc Rev Comput Stat 2(4):433–459CrossRef
9.
Zurück zum Zitat Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531MathSciNetCrossRef Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531MathSciNetCrossRef
11.
Zurück zum Zitat Cueto E, Chinesta F (2014) Real time simulation for computational surgery: a review. Adv Model Simul Eng Sci 1(1):11CrossRef Cueto E, Chinesta F (2014) Real time simulation for computational surgery: a review. Adv Model Simul Eng Sci 1(1):11CrossRef
12.
Zurück zum Zitat Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251MathSciNetCrossRef Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251MathSciNetCrossRef
13.
Zurück zum Zitat Radermacher A, Reese S (2016) Pod-based model reduction with empirical interpolation applied to nonlinear elasticity. Int J Numer Meth Eng 107(6):477–495MathSciNetCrossRef Radermacher A, Reese S (2016) Pod-based model reduction with empirical interpolation applied to nonlinear elasticity. Int J Numer Meth Eng 107(6):477–495MathSciNetCrossRef
14.
Zurück zum Zitat Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764MathSciNetCrossRef Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764MathSciNetCrossRef
15.
Zurück zum Zitat Everson R, Sirovich L (1995) Karhunen-loeve procedure for gappy data. JOSA A 12(8):1657–1664CrossRef Everson R, Sirovich L (1995) Karhunen-loeve procedure for gappy data. JOSA A 12(8):1657–1664CrossRef
16.
Zurück zum Zitat Carlberg K, Farhat C, Cortial J, Amsallem D (2013) The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J Comput Phys 242:623–647MathSciNetCrossRef Carlberg K, Farhat C, Cortial J, Amsallem D (2013) The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J Comput Phys 242:623–647MathSciNetCrossRef
17.
Zurück zum Zitat Farhat C, Amsallem D (2008) Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity. In: Proceedings of the 46th AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics, jan 2008 Farhat C, Amsallem D (2008) Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity. In: Proceedings of the 46th AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics, jan 2008
18.
Zurück zum Zitat Amsallem D, Cortial J, Carlberg K, Farhat C (2009) A method for interpolating on manifolds structural dynamics reduced-order models. Int J Numer Meth Eng 80(9):1241–1258CrossRef Amsallem D, Cortial J, Carlberg K, Farhat C (2009) A method for interpolating on manifolds structural dynamics reduced-order models. Int J Numer Meth Eng 80(9):1241–1258CrossRef
19.
Zurück zum Zitat Mosquera MR (2018) Interpolation sur les variétés grassmanniennes et applications à la réduction de modèles en mécanique. PhD thesis, La Rochelle Mosquera MR (2018) Interpolation sur les variétés grassmanniennes et applications à la réduction de modèles en mécanique. PhD thesis, La Rochelle
20.
Zurück zum Zitat Niroomandi S, Alfaro I, Cueto E, Chinesta F (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput Methods Prog Biomed 105(1):1–12CrossRef Niroomandi S, Alfaro I, Cueto E, Chinesta F (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput Methods Prog Biomed 105(1):1–12CrossRef
21.
Zurück zum Zitat Edelman A, Arias T, Smith ST (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353MathSciNetCrossRef Edelman A, Arias T, Smith ST (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353MathSciNetCrossRef
22.
Zurück zum Zitat Absil P-A, Mahony R, Sepulchre R (2004) Riemannian geometry of grassmann manifolds with a view on algorithmic computation. Acta Appl Math 80(2):199–220MathSciNetCrossRef Absil P-A, Mahony R, Sepulchre R (2004) Riemannian geometry of grassmann manifolds with a view on algorithmic computation. Acta Appl Math 80(2):199–220MathSciNetCrossRef
23.
Zurück zum Zitat Gallot S, Hulin D, Lafontaine J (1990) Riemannian geometry, vol 2. Springer, New YorkCrossRef Gallot S, Hulin D, Lafontaine J (1990) Riemannian geometry, vol 2. Springer, New YorkCrossRef
25.
Zurück zum Zitat Kozlov SE (2000) Geometry of real grassmann manifolds. Part III. J Math Sci 100(3):2254–2268CrossRef Kozlov SE (2000) Geometry of real grassmann manifolds. Part III. J Math Sci 100(3):2254–2268CrossRef
26.
Zurück zum Zitat Mosquera R, El Hamidi A, Hamdouni A, Falaize A (2021) Generalization of the Neville–Aitken interpolation algorithm on Grassmann manifolds: applications to reduced order model. Int J Numer Meth Fluids 93(7):2421–2442MathSciNetCrossRef Mosquera R, El Hamidi A, Hamdouni A, Falaize A (2021) Generalization of the Neville–Aitken interpolation algorithm on Grassmann manifolds: applications to reduced order model. Int J Numer Meth Fluids 93(7):2421–2442MathSciNetCrossRef
27.
Zurück zum Zitat Ye K, Lim L-H (2016) Schubert varieties and distances between subspaces of different dimensions. SIAM J Matrix Anal Appl 37(3):1176–1197MathSciNetCrossRef Ye K, Lim L-H (2016) Schubert varieties and distances between subspaces of different dimensions. SIAM J Matrix Anal Appl 37(3):1176–1197MathSciNetCrossRef
28.
Zurück zum Zitat Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Meth Eng 71(8):987–1008MathSciNetCrossRef Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Meth Eng 71(8):987–1008MathSciNetCrossRef
29.
Zurück zum Zitat Bonet J, Burton AJ (1998) A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput Methods Appl Mech Eng 162(1–4):151–164CrossRef Bonet J, Burton AJ (1998) A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput Methods Appl Mech Eng 162(1–4):151–164CrossRef
30.
Zurück zum Zitat Almeida ES, Spilker RL (1998) Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput Methods Appl Mech Eng 151(3–4):513–538CrossRef Almeida ES, Spilker RL (1998) Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput Methods Appl Mech Eng 151(3–4):513–538CrossRef
31.
Zurück zum Zitat Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Numer Meth Eng 50(8):1777–1799CrossRef Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Numer Meth Eng 50(8):1777–1799CrossRef
32.
Zurück zum Zitat Boothby WM (1986) An introduction to differentiable manifolds and Riemannian geometry, vol 120. Academic press, CambridgeMATH Boothby WM (1986) An introduction to differentiable manifolds and Riemannian geometry, vol 120. Academic press, CambridgeMATH
33.
Zurück zum Zitat Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218CrossRef Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218CrossRef
34.
Zurück zum Zitat Golub GH, Hoffman A, Stewart GW (1987) A generalization of the Eckart–Young–Mirsky matrix approximation theorem. Linear Algebra Appl 88:317–327MathSciNetCrossRef Golub GH, Hoffman A, Stewart GW (1987) A generalization of the Eckart–Young–Mirsky matrix approximation theorem. Linear Algebra Appl 88:317–327MathSciNetCrossRef
35.
Zurück zum Zitat Stewart GW (1973) Introduction to matrix computations. Elsevier, Amsterdam Stewart GW (1973) Introduction to matrix computations. Elsevier, Amsterdam
36.
Zurück zum Zitat Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4–5):489–490CrossRef Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4–5):489–490CrossRef
37.
Zurück zum Zitat Abaqus. Providence, RI, (2014) Standard User’s Manual. Version 6:14 Abaqus. Providence, RI, (2014) Standard User’s Manual. Version 6:14
38.
Zurück zum Zitat Humphrey JD, Strumpf RK, Yin FCP (1990) Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J Biomech Eng 112(3):340–346CrossRef Humphrey JD, Strumpf RK, Yin FCP (1990) Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J Biomech Eng 112(3):340–346CrossRef
39.
Zurück zum Zitat Spencer AJM (1972) Deformations of fibre-reinforced materials. Clarendon Press, Oxford, UK; New YorkMATH Spencer AJM (1972) Deformations of fibre-reinforced materials. Clarendon Press, Oxford, UK; New YorkMATH
40.
Zurück zum Zitat Ball JM (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403MathSciNetCrossRef Ball JM (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403MathSciNetCrossRef
41.
Zurück zum Zitat May-Newman K, Yin FCP (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120(1):38–47CrossRef May-Newman K, Yin FCP (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120(1):38–47CrossRef
42.
Zurück zum Zitat Oulghelou M, Allery C (2018) Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the grassmann manifold. arXiv preprint arXiv:1901.03177 Oulghelou M, Allery C (2018) Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the grassmann manifold. arXiv preprint arXiv:​1901.​03177
43.
Zurück zum Zitat Kozlov SE (1997) Geometry of the real grassmannian manifolds. Parts I, II. Zapiski Nauchnykh Seminarov POMI 246:84–107 Kozlov SE (1997) Geometry of the real grassmannian manifolds. Parts I, II. Zapiski Nauchnykh Seminarov POMI 246:84–107
44.
Zurück zum Zitat Lee JM (2013) Smooth manifolds. Introduction to smooth manifolds. Springer, New York, pp 1–31 Lee JM (2013) Smooth manifolds. Introduction to smooth manifolds. Springer, New York, pp 1–31
45.
Zurück zum Zitat Helmke U, Moore JB (2012) Optimization and dynamical systems. Springer, New YorkMATH Helmke U, Moore JB (2012) Optimization and dynamical systems. Springer, New YorkMATH
46.
Zurück zum Zitat Kobayashi S, Nomizu K (1996) Foundations of differential geometry, Vol. I. Wiley Classics Library. Wiley, New York. Reprint of the 1963 original, A Wiley-Interscience Publication Kobayashi S, Nomizu K (1996) Foundations of differential geometry, Vol. I. Wiley Classics Library. Wiley, New York. Reprint of the 1963 original, A Wiley-Interscience Publication
47.
Zurück zum Zitat Ferrer J, Garćia MI, Puerta F (1994) Differentiable families of subspaces. Linear Algebra Appl 199:229–252MathSciNetCrossRef Ferrer J, Garćia MI, Puerta F (1994) Differentiable families of subspaces. Linear Algebra Appl 199:229–252MathSciNetCrossRef
48.
Metadaten
Titel
On the stability of POD basis interpolation on Grassmann manifolds for parametric model order reduction
verfasst von
Orestis Friderikos
Emmanuel Baranger
Marc Olive
David Neron
Publikationsdatum
11.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2022
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02163-0

Weitere Artikel der Ausgabe 1/2022

Computational Mechanics 1/2022 Zur Ausgabe

Neuer Inhalt