Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

On the Stabilization of the Icosahedral Structure of Small Silver Nanoclusters under Thermal Action

verfasst von: D. A. Ryzhkova, S. L. Gafner, Yu. Ya. Gafner

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

One of the possible ways to improve the technical characteristics of QLEDs and OLEDs can be the use of the surface plasmon resonance that occurs in silver nanoparticles embedded in them. In the course of the experiments, it became clear that the frequency and intensity of the plasmon resonance strongly depend on the shape and size of the Ag nanoparticles that are used. Therefore, by adjusting these parameters of the plasmonic nanostructure and its internal structure it is possible to achieve significant progress in the formation of technical solutions for the creation of newest LEDs. For this, the thermal stability of the structure of small silver nanoclusters was studied by molecular dynamics in order to find the conditions for creating stable icosahedral structures. It was found that the use of Ag nanoclusters with a disordered initial structure in most cases led to the formation of the required five-particle symmetry in the operating temperature range of the LED, which is unattainable with currently available synthesis methods. The ideas proposed in the article can be used to create a more stable surface plasmon resonance effect in the next generation of OLEDs and QLEDs.
Literatur
1.
Zurück zum Zitat F. D. Kiss, R. Miotto, and A. Ferraz, “Size effects on silver nanoparticles' properties,” Nanotechnology 22, 275708 (2011). CrossRef F. D. Kiss, R. Miotto, and A. Ferraz, “Size effects on silver nanoparticles' properties,” Nanotechnology 22, 275708 (2011). CrossRef
2.
Zurück zum Zitat W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008). CrossRef W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008). CrossRef
3.
Zurück zum Zitat K. Nagpal, E. Rauwel, F. Ducroquet, and P. Rauwel, “Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review,” Beilstein J. Nanotechnol. 12, 1078–1092 (2021). CrossRef K. Nagpal, E. Rauwel, F. Ducroquet, and P. Rauwel, “Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review,” Beilstein J. Nanotechnol. 12, 1078–1092 (2021). CrossRef
4.
Zurück zum Zitat Q. Lin, B. Song, H. Wang, F. Zhang, F. Chen, L. Wang, L. S. Li, F. Guo, and H. Shen, “High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers,” J. Mater. Chem. C 4, 7223–7229 (2016). CrossRef Q. Lin, B. Song, H. Wang, F. Zhang, F. Chen, L. Wang, L. S. Li, F. Guo, and H. Shen, “High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers,” J. Mater. Chem. C 4, 7223–7229 (2016). CrossRef
5.
Zurück zum Zitat E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters,” ACS Appl. Mater. Interfaces 11, 46062–46069 (2019). CrossRef E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters,” ACS Appl. Mater. Interfaces 11, 46062–46069 (2019). CrossRef
6.
Zurück zum Zitat M. C. Neves, M. A. Martins, P. C. R. Soares-Santos, P. Rauwel, R. A. S. Ferreira, T. Monteiro, L. D. Carlos, and T. Trindade, “Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots,” Nanotechnology 19, 155601 (2008). CrossRef M. C. Neves, M. A. Martins, P. C. R. Soares-Santos, P. Rauwel, R. A. S. Ferreira, T. Monteiro, L. D. Carlos, and T. Trindade, “Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots,” Nanotechnology 19, 155601 (2008). CrossRef
7.
Zurück zum Zitat T. HoonSeo, B. Kyoung Kim, G. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103, 051105 (2013). CrossRef T. HoonSeo, B. Kyoung Kim, G. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103, 051105 (2013). CrossRef
8.
Zurück zum Zitat T. Tanaka, Y. Totoki, A. Fujiki, N. Zettsu, Y. Miyake, M. Akai-Kasaya, A. Saito, T. Ogawa, and Y. Kuwahara, “Enhanced red-light emission by local plasmon coupling of Au nanorods in an organic light-emitting diode,” Appl. Phys. Express 4, 032105 (2011). CrossRef T. Tanaka, Y. Totoki, A. Fujiki, N. Zettsu, Y. Miyake, M. Akai-Kasaya, A. Saito, T. Ogawa, and Y. Kuwahara, “Enhanced red-light emission by local plasmon coupling of Au nanorods in an organic light-emitting diode,” Appl. Phys. Express 4, 032105 (2011). CrossRef
9.
Zurück zum Zitat Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, K. Jiang, and S. Fan, “Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles,” Nanoscale Res. Lett. 9, 7 (2014). CrossRef Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, K. Jiang, and S. Fan, “Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles,” Nanoscale Res. Lett. 9, 7 (2014). CrossRef
10.
Zurück zum Zitat J. B. Shin, S.-W. Baek, S. M. Lee, M. Kim, J.-Y. Lee, and K. C. Choi, “Efficient green organic light-emitting diodes by plasmonic silver nanoparticles,” IEEE Photonics Technol. Lett. 28, 371–374 (2016). CrossRef J. B. Shin, S.-W. Baek, S. M. Lee, M. Kim, J.-Y. Lee, and K. C. Choi, “Efficient green organic light-emitting diodes by plasmonic silver nanoparticles,” IEEE Photonics Technol. Lett. 28, 371–374 (2016). CrossRef
11.
Zurück zum Zitat J. Choi, S. Kim, C. H. Park, J. H. Kwack, C. H. Park, H. Hwang, H.-S. Im, Y. W. Park, and B.-K. Ju, “Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures,” ACS Appl. Mater. Interfaces 10, 32373–32379 (2018). CrossRef J. Choi, S. Kim, C. H. Park, J. H. Kwack, C. H. Park, H. Hwang, H.-S. Im, Y. W. Park, and B.-K. Ju, “Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures,” ACS Appl. Mater. Interfaces 10, 32373–32379 (2018). CrossRef
12.
Zurück zum Zitat P. J. Jesuraj, K. Jeganathan, M. Navaneethan, and Y. Hayakawa, “Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices,” Synth. Met. 211, 155–160 (2016). CrossRef P. J. Jesuraj, K. Jeganathan, M. Navaneethan, and Y. Hayakawa, “Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices,” Synth. Met. 211, 155–160 (2016). CrossRef
13.
Zurück zum Zitat J. Feng, D. Sun, S. Mei, W. Shi, F. Mei, Y. Zhou, J. Xu, Y. Jiang, and L. Wu, “Plasmonic-enhanced organic light-emitting diodes based on a graphene oxide/Au nanoparticles composite hole injection layer,” Front. Mater. 5, 75 (2018). J. Feng, D. Sun, S. Mei, W. Shi, F. Mei, Y. Zhou, J. Xu, Y. Jiang, and L. Wu, “Plasmonic-enhanced organic light-emitting diodes based on a graphene oxide/Au nanoparticles composite hole injection layer,” Front. Mater. 5, 75 (2018).
14.
Zurück zum Zitat M. Jung, D. Yoon Mo, M. Kim, C. Kim, T. Lee, J. Kim Hun, S. Lee, S. -H. Lim, and D. Woo, “Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode,” Appl. Phys. Lett. 105, 013306 (2014). CrossRef M. Jung, D. Yoon Mo, M. Kim, C. Kim, T. Lee, J. Kim Hun, S. Lee, S. -H. Lim, and D. Woo, “Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode,” Appl. Phys. Lett. 105, 013306 (2014). CrossRef
15.
Zurück zum Zitat J. Jayabharathi, A. Prabhakaran, V. Thanikachalam, and M. J. Sundharesan, “Hybrid organic-inorganic light emitting diodes: effect of Ag-doped ZnO,” Photochem. Photobiol. A 325, 88–96 (2016). CrossRef J. Jayabharathi, A. Prabhakaran, V. Thanikachalam, and M. J. Sundharesan, “Hybrid organic-inorganic light emitting diodes: effect of Ag-doped ZnO,” Photochem. Photobiol. A 325, 88–96 (2016). CrossRef
16.
Zurück zum Zitat K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004). CrossRef K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004). CrossRef
17.
Zurück zum Zitat M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.‑Y. Cho, C. C. Byeon, and S. -J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008). CrossRef M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.‑Y. Cho, C. C. Byeon, and S. -J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008). CrossRef
18.
Zurück zum Zitat S.-H. Chen, C.-L. Huang, C.-F. Yu, G.-F. Wu, Y.‑C. Kuan, B.-H. Cheng, and Y.-R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42, 3411–3414 (2017). CrossRef S.-H. Chen, C.-L. Huang, C.-F. Yu, G.-F. Wu, Y.‑C. Kuan, B.-H. Cheng, and Y.-R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42, 3411–3414 (2017). CrossRef
19.
Zurück zum Zitat J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan, “Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles,” Nanoscale Res. Lett. 4, 1121–1125 (2009). CrossRef J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan, “Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles,” Nanoscale Res. Lett. 4, 1121–1125 (2009). CrossRef
20.
Zurück zum Zitat F. Cleri and V. Rosato, “Tight binding potentials for transition metal alloys,” Phys. Rev. B 48, 22–33 (1993). CrossRef F. Cleri and V. Rosato, “Tight binding potentials for transition metal alloys,” Phys. Rev. B 48, 22–33 (1993). CrossRef
21.
Zurück zum Zitat T. Pang, An Introduction to Computational Physics (University Press, Cambridge, 2006). CrossRef T. Pang, An Introduction to Computational Physics (University Press, Cambridge, 2006). CrossRef
22.
Zurück zum Zitat H. Akbarzadeh and H. Yaghoubi, “Molecular dynamics simulations of silver nanocluster supported on carbon nanotube,” J. Colloid Interface Sci. 418, 178–184 (2014). CrossRef H. Akbarzadeh and H. Yaghoubi, “Molecular dynamics simulations of silver nanocluster supported on carbon nanotube,” J. Colloid Interface Sci. 418, 178–184 (2014). CrossRef
23.
Zurück zum Zitat D. Hua and Y. Hongtao, “A mini review on controlling the size of Ag nanoclusters by changing the stabilizer to Ag ratio and by changing DNA sequence,” Adv. Nat. Sci. 8, 1–8 (2015). D. Hua and Y. Hongtao, “A mini review on controlling the size of Ag nanoclusters by changing the stabilizer to Ag ratio and by changing DNA sequence,” Adv. Nat. Sci. 8, 1–8 (2015).
24.
Zurück zum Zitat L. Deng, J. Yang, N. Zhan, T. Yu, H. Yu, and S. Chen, “High-performance solution-processed white organic light-emitting diodes based on silica-coated silver nanocubes,” Opt. Lett. 44, 983–986 (2019). CrossRef L. Deng, J. Yang, N. Zhan, T. Yu, H. Yu, and S. Chen, “High-performance solution-processed white organic light-emitting diodes based on silica-coated silver nanocubes,” Opt. Lett. 44, 983–986 (2019). CrossRef
25.
Zurück zum Zitat B. Munkhbat, H. Pohl, P. Denk, T. A. Klar, M. C. Scharber, and C. Hrelescu, “Performance boost of organic light-emitting diodes with plasmonicnanostars,” Adv. Opt. Mater. 4, 772–781 (2016). CrossRef B. Munkhbat, H. Pohl, P. Denk, T. A. Klar, M. C. Scharber, and C. Hrelescu, “Performance boost of organic light-emitting diodes with plasmonicnanostars,” Adv. Opt. Mater. 4, 772–781 (2016). CrossRef
26.
Zurück zum Zitat T. Yu, L. Deng, P. Xia, Y. Lu, N. Zhan, and S. Chen, “Ultrahigh-performance blue organic light-emitting diodes based on SiO 2 coated Ag nanocubes and its working mechanism,” Org. Electron. 75, 105388 (2019). CrossRef T. Yu, L. Deng, P. Xia, Y. Lu, N. Zhan, and S. Chen, “Ultrahigh-performance blue organic light-emitting diodes based on SiO 2 coated Ag nanocubes and its working mechanism,” Org. Electron. 75, 105388 (2019). CrossRef
27.
Zurück zum Zitat L. V. Redel’, Yu. Ya. Gafner, and S. L. Gafner, “Role of “magic” numbers in structure formation in small silver nanoclusters,” Phys. Solid State 57, 2117–2125 (2015). CrossRef L. V. Redel’, Yu. Ya. Gafner, and S. L. Gafner, “Role of “magic” numbers in structure formation in small silver nanoclusters,” Phys. Solid State 57, 2117–2125 (2015). CrossRef
28.
Zurück zum Zitat Y. Gafner, S. Gafner, and D. Bashkova, “On measuring the structure stability for small silver clusters to use them in plasmonics,” J. Nanopart. Res. 21, 243 (2019). CrossRef Y. Gafner, S. Gafner, and D. Bashkova, “On measuring the structure stability for small silver clusters to use them in plasmonics,” J. Nanopart. Res. 21, 243 (2019). CrossRef
29.
Zurück zum Zitat D. A. Ryzhkova, S. L. Gafner, and Yu. Ya. Gafner, “Effect of “magic” fcc numbers on the stability of the structure of small silver nanoclusters,” JETP Lett. 113, 638–645 (2021). CrossRef D. A. Ryzhkova, S. L. Gafner, and Yu. Ya. Gafner, “Effect of “magic” fcc numbers on the stability of the structure of small silver nanoclusters,” JETP Lett. 113, 638–645 (2021). CrossRef
30.
Zurück zum Zitat I. L. Garzon, K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, “Lowest energy structures of gold nanoclusters,” Phys. Rev. Lett. 81, 1600–1603 (1998). CrossRef I. L. Garzon, K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, “Lowest energy structures of gold nanoclusters,” Phys. Rev. Lett. 81, 1600–1603 (1998). CrossRef
31.
Zurück zum Zitat F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects,” Rev. Mod. Phys. 77, 371–423 (2005). CrossRef F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects,” Rev. Mod. Phys. 77, 371–423 (2005). CrossRef
32.
Zurück zum Zitat K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009). CrossRef K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009). CrossRef
Metadaten
Titel
On the Stabilization of the Icosahedral Structure of Small Silver Nanoclusters under Thermal Action
verfasst von
D. A. Ryzhkova
S. L. Gafner
Yu. Ya. Gafner
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060138

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe