Skip to main content
Erschienen in: Topics in Catalysis 17-18/2016

03.08.2016 | OriginalPaper

On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts

verfasst von: Sha Li, Jessica Scaranto, Manos Mavrikakis

Erschienen in: Topics in Catalysis | Ausgabe 17-18/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated route is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. As a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRef Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRef
2.
Zurück zum Zitat Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554CrossRef Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554CrossRef
3.
Zurück zum Zitat Xingwen Y, Pickup PG (2011) Codeposited PtSb/C catalysts for direct formic acid fuel cells. J Power Sources 196(19):7951–7956CrossRef Xingwen Y, Pickup PG (2011) Codeposited PtSb/C catalysts for direct formic acid fuel cells. J Power Sources 196(19):7951–7956CrossRef
4.
Zurück zum Zitat Liu C, Chen M, Du C, Zhang J, Yin G, Shi P, Sun Y (2012) Durability of ordered mesoporous carbon supported Pt particles as catalysts for direct formic acid fuel cells. Int J Electrochem Sci 7(11):10592–10606 Liu C, Chen M, Du C, Zhang J, Yin G, Shi P, Sun Y (2012) Durability of ordered mesoporous carbon supported Pt particles as catalysts for direct formic acid fuel cells. Int J Electrochem Sci 7(11):10592–10606
5.
Zurück zum Zitat Yinghui P, Ruiming Z, Blair SL (2009) Anode poisoning study in direct formic acid fuel cells. Electrochem Solid State Lett 12(3):B23–B26CrossRef Yinghui P, Ruiming Z, Blair SL (2009) Anode poisoning study in direct formic acid fuel cells. Electrochem Solid State Lett 12(3):B23–B26CrossRef
6.
Zurück zum Zitat Xingwen Y, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132CrossRef Xingwen Y, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132CrossRef
7.
Zurück zum Zitat Boddien A, Loges B, Junge H, Gaertner F, Noyes JR, Beller M (2009) Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts. Adv Synth Catal 351(14–15):2517–2520CrossRef Boddien A, Loges B, Junge H, Gaertner F, Noyes JR, Beller M (2009) Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts. Adv Synth Catal 351(14–15):2517–2520CrossRef
8.
Zurück zum Zitat Fellay C, Yan N, Dyson PJ, Laurenczy G (2009) Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Chem Eur J 15(15):3752–3760CrossRef Fellay C, Yan N, Dyson PJ, Laurenczy G (2009) Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Chem Eur J 15(15):3752–3760CrossRef
9.
Zurück zum Zitat Gan W, Dyson PJ, Laurenczy G (2009) Hydrogen storage and delivery: immobilization of a highly active homogeneous catalyst for the decomposition of formic acid to hydrogen and carbon dioxide. React Kinet Catal Lett 98(2):205–213CrossRef Gan W, Dyson PJ, Laurenczy G (2009) Hydrogen storage and delivery: immobilization of a highly active homogeneous catalyst for the decomposition of formic acid to hydrogen and carbon dioxide. React Kinet Catal Lett 98(2):205–213CrossRef
10.
Zurück zum Zitat Columbia MR, Thiel PA (1994) The interaction of formic-acid with transition metal surfaces, studied in ultrahigh vacuum. J Electroanal Chem 369(1–2):1–14CrossRef Columbia MR, Thiel PA (1994) The interaction of formic-acid with transition metal surfaces, studied in ultrahigh vacuum. J Electroanal Chem 369(1–2):1–14CrossRef
11.
Zurück zum Zitat Madix RJ (1980) Surface reaction modifiers—general overview. Abstracts of Papers of the American Chemical Society 180 (Aug): 26 Madix RJ (1980) Surface reaction modifiers—general overview. Abstracts of Papers of the American Chemical Society 180 (Aug): 26
12.
Zurück zum Zitat Larson LA, Dickinson JT (1979) Decomposition of formic acid on Ru(1010). Surf Sci 84(1):17–30CrossRef Larson LA, Dickinson JT (1979) Decomposition of formic acid on Ru(1010). Surf Sci 84(1):17–30CrossRef
13.
Zurück zum Zitat Solymosi F, Kiss J, Kovacs I (1987) Adsorption of HCOOH on Rh(111) and its reaction with preadsorbed oxygen. Surf Sci 192(1):47–65CrossRef Solymosi F, Kiss J, Kovacs I (1987) Adsorption of HCOOH on Rh(111) and its reaction with preadsorbed oxygen. Surf Sci 192(1):47–65CrossRef
14.
Zurück zum Zitat Senanayake SD, Mullins DR (2008) Redox pathways for HCOOH decomposition over CeO2 surfaces. J Phys Chem C 112(26):9744–9752CrossRef Senanayake SD, Mullins DR (2008) Redox pathways for HCOOH decomposition over CeO2 surfaces. J Phys Chem C 112(26):9744–9752CrossRef
15.
Zurück zum Zitat Kubota J, Bandara A, Wada A, Domen K, Hirose C (1996) IRAS study of formic acid decomposition on NiO(111)/Ni(111) surface: comparison of vacuum and catalytic conditions. Surf Sci 368:361–365CrossRef Kubota J, Bandara A, Wada A, Domen K, Hirose C (1996) IRAS study of formic acid decomposition on NiO(111)/Ni(111) surface: comparison of vacuum and catalytic conditions. Surf Sci 368:361–365CrossRef
16.
Zurück zum Zitat Dilara PA, Vohs JM (1993) TPD and HREELS investigation of the reaction of formic acid on ZrO2(100). J Phys Chem 97(49):12919–12923CrossRef Dilara PA, Vohs JM (1993) TPD and HREELS investigation of the reaction of formic acid on ZrO2(100). J Phys Chem 97(49):12919–12923CrossRef
17.
Zurück zum Zitat Iglesia E, Boudart M (1983) Decomposition of formic acid on copper, nickel, and copper–nickel alloys. 2. Catalytic and temperature-programmed decomposition of formic acid on Cu/SiO2, Cu/Al2O3, and Cu powder. J Catal 81(1):214–223CrossRef Iglesia E, Boudart M (1983) Decomposition of formic acid on copper, nickel, and copper–nickel alloys. 2. Catalytic and temperature-programmed decomposition of formic acid on Cu/SiO2, Cu/Al2O3, and Cu powder. J Catal 81(1):214–223CrossRef
18.
Zurück zum Zitat Bowker M, Madix RJ (1981) XPS, UPS and thermal desorption studies of the reactions of formaldehyde and formic acid with the Cu(110) surface. Surf Sci 102(2–3):542–565CrossRef Bowker M, Madix RJ (1981) XPS, UPS and thermal desorption studies of the reactions of formaldehyde and formic acid with the Cu(110) surface. Surf Sci 102(2–3):542–565CrossRef
19.
Zurück zum Zitat Marcinkowski MD, Murphy CJ, Liriano ML, Wasio NA, Lucci FR, Sykes ECH (2015) Microscopic view of the active sites for selective dehydrogenation of formic acid on Cu(111). ACS Catal 5(12):7371–7378CrossRef Marcinkowski MD, Murphy CJ, Liriano ML, Wasio NA, Lucci FR, Sykes ECH (2015) Microscopic view of the active sites for selective dehydrogenation of formic acid on Cu(111). ACS Catal 5(12):7371–7378CrossRef
20.
Zurück zum Zitat Youngs TGA, Haq S, Bowker M (2008) Formic acid adsorption and oxidation on Cu(110). Surf Sci 602(10):1775–1782CrossRef Youngs TGA, Haq S, Bowker M (2008) Formic acid adsorption and oxidation on Cu(110). Surf Sci 602(10):1775–1782CrossRef
21.
Zurück zum Zitat Bowker M, Haq S, Holroyd R, Parlett PM, Poulston S, Richardson N (1996) Spectroscopic and kinetic studies of formic acid adsorption on Cu(110). J Chem Soc Faraday Trans 92(23):4683–4686CrossRef Bowker M, Haq S, Holroyd R, Parlett PM, Poulston S, Richardson N (1996) Spectroscopic and kinetic studies of formic acid adsorption on Cu(110). J Chem Soc Faraday Trans 92(23):4683–4686CrossRef
22.
Zurück zum Zitat Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130(4):1402–1414CrossRef Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130(4):1402–1414CrossRef
23.
Zurück zum Zitat Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C 112(12):4608–4617CrossRef Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C 112(12):4608–4617CrossRef
24.
Zurück zum Zitat Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000(1)over-bar). Phys Chem Chem Phys 12(33):9909–9917CrossRef Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000(1)over-bar). Phys Chem Chem Phys 12(33):9909–9917CrossRef
25.
Zurück zum Zitat Quinn DF, Taylor D (1965) Decomposition of formic acid and methanol on copper–nickel alloys. J Chem Soc 5248–5251 Quinn DF, Taylor D (1965) Decomposition of formic acid and methanol on copper–nickel alloys. J Chem Soc 5248–5251
26.
Zurück zum Zitat Rundell DN, Saltsburg HM, Smith WD (1980) the role of multiple gas-solid collisions in the catalytic decomposition of formic acid. Chem Eng Sci 35(5):1113–1119CrossRef Rundell DN, Saltsburg HM, Smith WD (1980) the role of multiple gas-solid collisions in the catalytic decomposition of formic acid. Chem Eng Sci 35(5):1113–1119CrossRef
27.
Zurück zum Zitat Inglis HS, Taylor D (1969) Decomposition of formic acid on titanium, vanadium, chromium, manganese, iron, cobalt, nickel and copper. J Chem Soc Inorg Phys Theor 19:2985–2987CrossRef Inglis HS, Taylor D (1969) Decomposition of formic acid on titanium, vanadium, chromium, manganese, iron, cobalt, nickel and copper. J Chem Soc Inorg Phys Theor 19:2985–2987CrossRef
28.
Zurück zum Zitat Nakano H, Nakamura I, Fujitani T, Nakamura J (2001) Structure-dependent kinetics for synthesis and decomposition of formate species over Cu(111) and Cu(110) model catalysts. J Phys Chem B 105(7):1355–1365CrossRef Nakano H, Nakamura I, Fujitani T, Nakamura J (2001) Structure-dependent kinetics for synthesis and decomposition of formate species over Cu(111) and Cu(110) model catalysts. J Phys Chem B 105(7):1355–1365CrossRef
29.
Zurück zum Zitat Hu ZM, Boyd RJ (2000) Structure sensitivity and cluster size convergence for formate adsorption on copper surfaces: a DFT cluster model study. J Chem Phys 112(21):9562–9568CrossRef Hu ZM, Boyd RJ (2000) Structure sensitivity and cluster size convergence for formate adsorption on copper surfaces: a DFT cluster model study. J Chem Phys 112(21):9562–9568CrossRef
30.
Zurück zum Zitat Bowker M, Rowbotham E, Leibsle FM, Haq S (1996) The adsorption and decomposition of formic acid on Cu{110}. Surf Sci 349(2):97–110CrossRef Bowker M, Rowbotham E, Leibsle FM, Haq S (1996) The adsorption and decomposition of formic acid on Cu{110}. Surf Sci 349(2):97–110CrossRef
31.
Zurück zum Zitat Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1(4):365–384CrossRef Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1(4):365–384CrossRef
32.
Zurück zum Zitat Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—application of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687CrossRef Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—application of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687CrossRef
33.
Zurück zum Zitat Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249CrossRef Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249CrossRef
34.
Zurück zum Zitat Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348CrossRef Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348CrossRef
35.
Zurück zum Zitat Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421CrossRef Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421CrossRef
36.
Zurück zum Zitat Greeley J, Mavrikakis M (2002) Methanol decomposition on Cu(111): a DFT study. J Catal 208(2):291–300CrossRef Greeley J, Mavrikakis M (2002) Methanol decomposition on Cu(111): a DFT study. J Catal 208(2):291–300CrossRef
37.
Zurück zum Zitat Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M (2014) Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal 4(12):4434–4445CrossRef Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M (2014) Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal 4(12):4434–4445CrossRef
38.
Zurück zum Zitat Chadi DJ, Cohen ML (1973) Special points in Brillouin zone. Physical Review B 8(12):5747–5753CrossRef Chadi DJ, Cohen ML (1973) Special points in Brillouin zone. Physical Review B 8(12):5747–5753CrossRef
39.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRef
40.
Zurück zum Zitat Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRef Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRef
41.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef
42.
Zurück zum Zitat Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59(19):12301–12304CrossRef Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59(19):12301–12304CrossRef
43.
Zurück zum Zitat Straumanis ME, Yu LS (1969) Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In alpha phase. Acta Crystallogr Sect A (Cryst Phys Diffract Theor Gen Crystallogr) A25:676–682CrossRef Straumanis ME, Yu LS (1969) Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In alpha phase. Acta Crystallogr Sect A (Cryst Phys Diffract Theor Gen Crystallogr) A25:676–682CrossRef
44.
Zurück zum Zitat Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540(2–3):215–229CrossRef Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540(2–3):215–229CrossRef
45.
Zurück zum Zitat Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRef Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRef
46.
Zurück zum Zitat Singh S, Li S, Carrasquillo-Flores R, Alba-Rubio AC, Dumesic JA, Mavrikakis M (2014) Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments. AIChE J 60(4):1303–1319CrossRef Singh S, Li S, Carrasquillo-Flores R, Alba-Rubio AC, Dumesic JA, Mavrikakis M (2014) Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments. AIChE J 60(4):1303–1319CrossRef
Metadaten
Titel
On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts
verfasst von
Sha Li
Jessica Scaranto
Manos Mavrikakis
Publikationsdatum
03.08.2016
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 17-18/2016
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-016-0672-1

Weitere Artikel der Ausgabe 17-18/2016

Topics in Catalysis 17-18/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.