Skip to main content

2017 | OriginalPaper | Buchkapitel

On the Terminal Full Order Sliding Mode Control of Uncertain Chaotic Systems

verfasst von : Anchan Saxena, Apeksha Tandon, Awadhi Saxena, K. P. S. Rana, Vineet Kumar

Erschienen in: Fractional Order Control and Synchronization of Chaotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the years, several forms of sliding mode control (SMC), such as conventional SMC, terminal SMC (TSMC) and fuzzy SMC (FSMC) have been developed to cater to the control needs of complex, non-linear and uncertain systems. However, the chattering phenomenon in conventional SMC and the singularity errors in TSMC make the application of these schemes relatively impractical. In this chapter, terminal full order SMC (TFOSMC), the recent development in this line, has been explored for efficient control of the uncertain chaotic systems. Two important chaotic systems, Genesio and Arneodo-Coullet have been considered in fractional order as well as integer order dynamics. The investigated fractional and integer order chaotic systems are controlled using fractional order TFOSMC and integer order TFOSMC, respectively and the control performance has been assessed for settling time, amount of chattering, integral absolute error (IAE) and integral time absolute error (ITAE). To gauge the relative performance of TFOSMC, a comparative study with FSMC, tuned by Cuckoo Search Algorithm for the minimum IAE and amount of chattering has also been performed using settling time, amount of chattering, IAE and ITAE performances. The intensive simulation studies presented in this chapter clearly demonstrate that the settling time, amount of chattering and steady-state tracking errors offered by TFOSMC are significantly lower than that of FSMC; therefore, making TFOSMC a superior scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ablay, G. (2009). Sliding mode control of uncertain unified chaotic systems. Nonlinear Analysis: Hybrid Systems, 3(4), 531–535.MathSciNetMATH Ablay, G. (2009). Sliding mode control of uncertain unified chaotic systems. Nonlinear Analysis: Hybrid Systems, 3(4), 531–535.MathSciNetMATH
2.
Zurück zum Zitat Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69(1–2), 247–261.MathSciNetCrossRefMATH Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69(1–2), 247–261.MathSciNetCrossRefMATH
3.
Zurück zum Zitat Aghababa, M. P. (2013). Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 86(10), 1744–1756.MathSciNetCrossRefMATH Aghababa, M. P. (2013). Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 86(10), 1744–1756.MathSciNetCrossRefMATH
4.
Zurück zum Zitat Axtell, M., & Bise, M. E. (1990). Fractional calculus application in control systems. In Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, 1990. NAECON 1990 (pp. 563–566) IEEE. Axtell, M., & Bise, M. E. (1990). Fractional calculus application in control systems. In Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, 1990. NAECON 1990 (pp. 563–566) IEEE.
5.
Zurück zum Zitat Azar, A. T., Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. Springer. doi:10.1007/s00521-014-1560-x. Azar, A. T., Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995. Springer. doi:10.​1007/​s00521-014-1560-x.
6.
Zurück zum Zitat Azar, A. T., Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing (Vol. 319, pp 1–44). Germany: Springer. doi:10.1007/978-3-319-12883-2_1. Azar, A. T., Serrano, F. E. (2015). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing (Vol. 319, pp 1–44). Germany: Springer. doi:10.​1007/​978-3-319-12883-2_​1.
7.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015). Stabilization and control of mechanical systems with backlash. In: A. T. Azar & S. Vaidyanathan (Eds.), Advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series. USA: IGI-Global. Azar, A. T., & Serrano, F. E. (2015). Stabilization and control of mechanical systems with backlash. In: A. T. Azar & S. Vaidyanathan (Eds.), Advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series. USA: IGI-Global.
8.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI loop shaping. International Journal of System Dynamics Applications (IJSDA), 5(3), 20–47. Azar, A. T., & Serrano, F. E. (2016). Stabilization of mechanical systems with backlash by PI loop shaping. International Journal of System Dynamics Applications (IJSDA), 5(3), 20–47.
9.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2016). Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. ISBN 978–3-319-30338-3. Azar, A. T., & Vaidyanathan, S. (2016). Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. ISBN 978–3-319-30338-3.
10.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2014c). Handbook of research on advanced intelligent control engineering and automation (1st ed.). Advances in Computational Intelligence and Robotics (ACIR) Book Series Hershey, PA: IGI Global. Azar, A. T., & Vaidyanathan, S. (2014c). Handbook of research on advanced intelligent control engineering and automation (1st ed.). Advances in Computational Intelligence and Robotics (ACIR) Book Series Hershey, PA: IGI Global.
11.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in Computational Intelligence (vol. 581). Germany: Springer. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in Computational Intelligence (vol. 581). Germany: Springer.
12.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (Eds). (2015b). Computational intelligence applications in modeling and control. Studies in Computational Intelligence (Vol. 575). Germany: Springer. Azar, A. T., & Vaidyanathan, S. (Eds). (2015b). Computational intelligence applications in modeling and control. Studies in Computational Intelligence (Vol. 575). Germany: Springer.
13.
Zurück zum Zitat Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in Computational Intelligence (Vol. 576). Germany: Springer. Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in Computational Intelligence (Vol. 576). Germany: Springer.
14.
Zurück zum Zitat Bai, J., & Yu, Y. (2010). Sliding mode control of fractional-order hyperchaotic systems. In 2010 International Workshop on Chaos-Fractal Theories and Applications. Bai, J., & Yu, Y. (2010). Sliding mode control of fractional-order hyperchaotic systems. In 2010 International Workshop on Chaos-Fractal Theories and Applications.
15.
Zurück zum Zitat Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.
16.
Zurück zum Zitat Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.
17.
Zurück zum Zitat Carlson, G. E., & Halijak, C. A. (1961). Simulation of the fractional derivative operator and the fractional integral operator. Kansas State University Bulletin, 45(7), 1–22. Carlson, G. E., & Halijak, C. A. (1961). Simulation of the fractional derivative operator and the fractional integral operator. Kansas State University Bulletin, 45(7), 1–22.
18.
Zurück zum Zitat Chang, W., Park, J. B., Joo, Y. H., & Chen, G. (2002). Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets and Systems, 125(1), 1–22.MathSciNetCrossRefMATH Chang, W., Park, J. B., Joo, Y. H., & Chen, G. (2002). Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems. Fuzzy Sets and Systems, 125(1), 1–22.MathSciNetCrossRefMATH
19.
Zurück zum Zitat Chen, C. S., & Chen, W. L. (1998). Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system. IEEE Transactions on Industrial Electronics, 45(2), 297–306.CrossRef Chen, C. S., & Chen, W. L. (1998). Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system. IEEE Transactions on Industrial Electronics, 45(2), 297–306.CrossRef
20.
Zurück zum Zitat Chen, D., Zhang, R., Sprott, J. C., & Ma, X. (2012). Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 70(2), 1549–1561.MathSciNetCrossRefMATH Chen, D., Zhang, R., Sprott, J. C., & Ma, X. (2012). Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 70(2), 1549–1561.MathSciNetCrossRefMATH
21.
Zurück zum Zitat Chen, D. Y., Liu, Y. X., Ma, X. Y., & Zhang, R. F. (2012). Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dynamics, 67(1), 893–901.MathSciNetCrossRefMATH Chen, D. Y., Liu, Y. X., Ma, X. Y., & Zhang, R. F. (2012). Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dynamics, 67(1), 893–901.MathSciNetCrossRefMATH
22.
Zurück zum Zitat Chen, Y., Petras, I., & Xue, D. (2009). Fractional order control-a tutorial. In 2009 American Control Conference (pp. 1397–1411). IEEE. Chen, Y., Petras, I., & Xue, D. (2009). Fractional order control-a tutorial. In 2009 American Control Conference (pp. 1397–1411). IEEE.
23.
Zurück zum Zitat Cuautle, E. T. (2011). Chaotic systems. InTech. Cuautle, E. T. (2011). Chaotic systems. InTech.
24.
Zurück zum Zitat Delavari, H., Ghaderi, R., Ranjbar, A., & Momani, S. (2010). Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15(4), 963–978.MathSciNetCrossRefMATH Delavari, H., Ghaderi, R., Ranjbar, A., & Momani, S. (2010). Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15(4), 963–978.MathSciNetCrossRefMATH
25.
Zurück zum Zitat Dotoli, M., Lino, P., Maione, B., Naso, D., & Turchiano, B. (2002). A tutorial on genetic optimization of fuzzy sliding mode controllers: Swinging up an inverted pendulum with restricted travel. In Proceedings of EUNITE 2002. Dotoli, M., Lino, P., Maione, B., Naso, D., & Turchiano, B. (2002). A tutorial on genetic optimization of fuzzy sliding mode controllers: Swinging up an inverted pendulum with restricted travel. In Proceedings of EUNITE 2002.
26.
27.
Zurück zum Zitat Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef
28.
Zurück zum Zitat Gang-Quan, S., Hui, C., & Yan-Bin, Z. (2011). A new four-dimensional hyperchaotic Lorenz system and its adaptive control. Chinese Physics B, 20(1), 010509.CrossRef Gang-Quan, S., Hui, C., & Yan-Bin, Z. (2011). A new four-dimensional hyperchaotic Lorenz system and its adaptive control. Chinese Physics B, 20(1), 010509.CrossRef
29.
Zurück zum Zitat Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91(3), 034101.CrossRef Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91(3), 034101.CrossRef
30.
Zurück zum Zitat Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(8), 485–490.CrossRef Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(8), 485–490.CrossRef
31.
Zurück zum Zitat Hoppensteadt, F. C. (2013). Analysis and simulation of chaotic systems (Vol. 94). Springer Science & Business Media. Hoppensteadt, F. C. (2013). Analysis and simulation of chaotic systems (Vol. 94). Springer Science & Business Media.
32.
Zurück zum Zitat Ionescu, C., Machado, J. T., & De Keyser, R. (2011). Fractional-order impulse response of the respiratory system. Computers & Mathematics with Applications, 62(3), 845–854.CrossRefMATH Ionescu, C., Machado, J. T., & De Keyser, R. (2011). Fractional-order impulse response of the respiratory system. Computers & Mathematics with Applications, 62(3), 845–854.CrossRefMATH
33.
Zurück zum Zitat Kamat, S., & Karegowda, A. G. (2014). A brief survey on cuckoo search applications. International Journal of Innovative Research in Computer and Communication Engineering, 2. Kamat, S., & Karegowda, A. G. (2014). A brief survey on cuckoo search applications. International Journal of Innovative Research in Computer and Communication Engineering, 2.
34.
Zurück zum Zitat Khari, S., Rahmani, Z., & Rezaie, B. (2016). Designing fuzzy logic controller based on combination of terminal sliding mode and state feedback controllers for stabilizing chaotic behaviour in rod-type plasma torch system. Transactions of the Institute of Measurement and Control, 38(2), 150–164.CrossRef Khari, S., Rahmani, Z., & Rezaie, B. (2016). Designing fuzzy logic controller based on combination of terminal sliding mode and state feedback controllers for stabilizing chaotic behaviour in rod-type plasma torch system. Transactions of the Institute of Measurement and Control, 38(2), 150–164.CrossRef
35.
Zurück zum Zitat Laskin, N. (2000). Fractional market dynamics. Physica A: Statistical Mechanics and its Applications, 287(3), 482–492.MathSciNetCrossRef Laskin, N. (2000). Fractional market dynamics. Physica A: Statistical Mechanics and its Applications, 287(3), 482–492.MathSciNetCrossRef
36.
Zurück zum Zitat Lin, T. C., Chen, M. C., & Roopaei, M. (2011). Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Engineering Applications of Artificial Intelligence, 24(1), 39–49.CrossRef Lin, T. C., Chen, M. C., & Roopaei, M. (2011). Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Engineering Applications of Artificial Intelligence, 24(1), 39–49.CrossRef
37.
Zurück zum Zitat Liu, J., & Wang, X. (2012). Advanced sliding mode control for mechanical systems (pp. 41–80). Germany: Springer. Liu, J., & Wang, X. (2012). Advanced sliding mode control for mechanical systems (pp. 41–80). Germany: Springer.
39.
Zurück zum Zitat Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. Advances and applications in Sliding Mode Control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 407–433). Berlin/Heidelberg: Springer GmbH. doi:10.1007/978-3-319-11173-5_15. Mekki, H., Boukhetala, D., & Azar, A. T. (2015). Sliding modes for fault tolerant control. Advances and applications in Sliding Mode Control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 407–433). Berlin/Heidelberg: Springer GmbH. doi:10.​1007/​978-3-319-11173-5_​15.
40.
Zurück zum Zitat Mohadeszadeh, M., & Delavari, H. (2015). Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller. International Journal of Dynamics and Control, 1–10. Mohadeszadeh, M., & Delavari, H. (2015). Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller. International Journal of Dynamics and Control, 1–10.
41.
Zurück zum Zitat Nazzal, J. M., & Natsheh, A. N. (2007). Chaos control using sliding-mode theory. Chaos, Solitons & Fractals, 33(2), 695–702.CrossRef Nazzal, J. M., & Natsheh, A. N. (2007). Chaos control using sliding-mode theory. Chaos, Solitons & Fractals, 33(2), 695–702.CrossRef
43.
Zurück zum Zitat Oustaloup, A. (Eds). (2006). Proceedings of The Second IFAC Symposium on Fractional Differentiation and its Applications (FDA06), Porto, Portugal, July 19–21 2006. IFAC. Oxford, UK: Elsevier Science Ltd. Oustaloup, A. (Eds). (2006). Proceedings of The Second IFAC Symposium on Fractional Differentiation and its Applications (FDA06), Porto, Portugal, July 19–21 2006. IFAC. Oxford, UK: Elsevier Science Ltd.
44.
Zurück zum Zitat Oustaloup, A., Mathieu, B., & Lanusse, P. (1995). The CRONE control of resonant plants: Application to a flexible transmission. European Journal of control, 1(2), 113–121.CrossRef Oustaloup, A., Mathieu, B., & Lanusse, P. (1995). The CRONE control of resonant plants: Application to a flexible transmission. European Journal of control, 1(2), 113–121.CrossRef
45.
Zurück zum Zitat Perruquetti, W., & Barbot, J. P. (2002). Sliding mode control in engineering. CRC Press. Perruquetti, W., & Barbot, J. P. (2002). Sliding mode control in engineering. CRC Press.
46.
Zurück zum Zitat Petráš, I. (2009). Chaos in the fractional-order Volta’s system: Modeling and simulation. Nonlinear Dynamics, 57(1–2), 157–170.CrossRefMATH Petráš, I. (2009). Chaos in the fractional-order Volta’s system: Modeling and simulation. Nonlinear Dynamics, 57(1–2), 157–170.CrossRefMATH
47.
Zurück zum Zitat Petrov, V., Gaspar, V., Masere, J., & Showalter, K. (1993). Controlling chaos in the Belousov—Zhabotinsky reaction. Nature, 361(6409), 240–243.CrossRef Petrov, V., Gaspar, V., Masere, J., & Showalter, K. (1993). Controlling chaos in the Belousov—Zhabotinsky reaction. Nature, 361(6409), 240–243.CrossRef
48.
Zurück zum Zitat Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Physics Letters A, 170(6), 421–428.CrossRef Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Physics Letters A, 170(6), 421–428.CrossRef
49.
Zurück zum Zitat Rivero, M., Trujillo, J. J., Vázquez, L., & Velasco, M. P. (2011). Fractional dynamics of populations. Applied Mathematics and Computation, 218(3), 1089–1095.MathSciNetCrossRefMATH Rivero, M., Trujillo, J. J., Vázquez, L., & Velasco, M. P. (2011). Fractional dynamics of populations. Applied Mathematics and Computation, 218(3), 1089–1095.MathSciNetCrossRefMATH
50.
Zurück zum Zitat Ross, T. J. (2009). Fuzzy logic with engineering applications. New York: Wiley. Ross, T. J. (2009). Fuzzy logic with engineering applications. New York: Wiley.
51.
Zurück zum Zitat Roy, R., Murphy, T. W., Jr., Maier, T. D., Gills, Z., & Hunt, E. R. (1992). Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Physical Review Letters, 68(9), 1259.CrossRef Roy, R., Murphy, T. W., Jr., Maier, T. D., Gills, Z., & Hunt, E. R. (1992). Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Physical Review Letters, 68(9), 1259.CrossRef
52.
Zurück zum Zitat Ullah, N., Khattak, M. I., & Khan, W. (2015). Fractional order fuzzy terminal sliding mode control of aerodynamics load simulator. In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (pp. 0954410015580804). Ullah, N., Khattak, M. I., & Khan, W. (2015). Fractional order fuzzy terminal sliding mode control of aerodynamics load simulator. In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (pp. 0954410015580804).
53.
Zurück zum Zitat Vaidyanathan, S. (2011). Output regulation of Arneodo-Coullet chaotic system. In International Conference on Computer Science and Information Technology (pp. 98–107). Germany: Springer. Vaidyanathan, S. (2011). Output regulation of Arneodo-Coullet chaotic system. In International Conference on Computer Science and Information Technology (pp. 98–107). Germany: Springer.
54.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 19–38). Berlin/Heidelberg: Springer GmbH. Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 19–38). Berlin/Heidelberg: Springer GmbH.
55.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015b). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 527–547). Berlin/Heidelberg: Springer GmbH. Vaidyanathan, S., & Azar, A. T. (2015b). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 527–547). Berlin/Heidelberg: Springer GmbH.
56.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015c). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 549–569). Berlin/Heidelberg: Springer GmbH. Vaidyanathan, S., & Azar, A. T. (2015c). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series (Vol. 576, pp. 549–569). Berlin/Heidelberg: Springer GmbH.
57.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). A Novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). A Novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.
58.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.
59.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.
60.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing, Vol. 337, Springer-Verlag, Germany. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing, Vol. 337, Springer-Verlag, Germany.
61.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Generalized Projective Synchronization of a Novel Hyperchaotic Four-Wing System via Adaptive Control Method. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag. Vaidyanathan, S., & Azar, A. T. (2016). Generalized Projective Synchronization of a Novel Hyperchaotic Four-Wing System via Adaptive Control Method. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.
62.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. Advances in Chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.
63.
Zurück zum Zitat Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.CrossRef Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.CrossRef
64.
Zurück zum Zitat Valrio, D. (2012). Introducing fractional sliding mode control. In Proceedings of The Encontro de Jovens Investigadores do LAETA FEUP. Valrio, D. (2012). Introducing fractional sliding mode control. In Proceedings of The Encontro de Jovens Investigadores do LAETA FEUP.
65.
Zurück zum Zitat Vinagre, B. M., Chen, Y. Q., & Petráš, I. (2003). Two direct Tustin discretization methods for fractional-order differentiator/integrator. Journal of the Franklin Institute, 340(5), 349–362.MathSciNetCrossRefMATH Vinagre, B. M., Chen, Y. Q., & Petráš, I. (2003). Two direct Tustin discretization methods for fractional-order differentiator/integrator. Journal of the Franklin Institute, 340(5), 349–362.MathSciNetCrossRefMATH
66.
Zurück zum Zitat Westerlund, S., & Ekstam, L. (1994). Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1(5), 826–839.CrossRef Westerlund, S., & Ekstam, L. (1994). Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1(5), 826–839.CrossRef
67.
Zurück zum Zitat Wilkie, K. P., Drapaca, C. S., & Sivaloganathan, S. (2011). A nonlinear viscoelastic fractional derivative model of infant hydrocephalus. Applied Mathematics and Computation, 217(21), 8693–8704.MathSciNetCrossRefMATH Wilkie, K. P., Drapaca, C. S., & Sivaloganathan, S. (2011). A nonlinear viscoelastic fractional derivative model of infant hydrocephalus. Applied Mathematics and Computation, 217(21), 8693–8704.MathSciNetCrossRefMATH
68.
Zurück zum Zitat Wong, L. K., Leungn, F. H. F., & Tam, P. K. S. (2001). A fuzzy sliding controller for nonlinear systems. IEEE Transactions on Industrial Electronics, 48(1), 32–37.CrossRef Wong, L. K., Leungn, F. H. F., & Tam, P. K. S. (2001). A fuzzy sliding controller for nonlinear systems. IEEE Transactions on Industrial Electronics, 48(1), 32–37.CrossRef
69.
Zurück zum Zitat Wu, J. C., & Liu, T. S. (1996). A sliding-mode approach to fuzzy control design. IEEE Transactions on Control Systems Technology, 4(2), 141–151.CrossRef Wu, J. C., & Liu, T. S. (1996). A sliding-mode approach to fuzzy control design. IEEE Transactions on Control Systems Technology, 4(2), 141–151.CrossRef
70.
Zurück zum Zitat Wu, X., Lu, H., & Shen, S. (2009). Synchronization of a new fractional-order hyperchaotic system. Physics Letters A, 373(27), 2329–2337.MathSciNetCrossRefMATH Wu, X., Lu, H., & Shen, S. (2009). Synchronization of a new fractional-order hyperchaotic system. Physics Letters A, 373(27), 2329–2337.MathSciNetCrossRefMATH
71.
Zurück zum Zitat Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress (pp. 210–214). IEEE. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress (pp. 210–214). IEEE.
72.
Zurück zum Zitat Yau, H. T., & Chen, C. L. (2006). Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos, Solitons & Fractals, 30(3), 709–718.CrossRef Yau, H. T., & Chen, C. L. (2006). Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos, Solitons & Fractals, 30(3), 709–718.CrossRef
73.
Zurück zum Zitat Yin, C., Zhong, S. M., & Chen, W. F. (2012). Design of sliding mode controller for a class of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(1), 356–366.MathSciNetCrossRefMATH Yin, C., Zhong, S. M., & Chen, W. F. (2012). Design of sliding mode controller for a class of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(1), 356–366.MathSciNetCrossRefMATH
74.
Zurück zum Zitat Yuan, L., & Wu, H. S. (2010). Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems. Journal of Marine Science and Application, 9(4), 425–430.CrossRef Yuan, L., & Wu, H. S. (2010). Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems. Journal of Marine Science and Application, 9(4), 425–430.CrossRef
75.
76.
Metadaten
Titel
On the Terminal Full Order Sliding Mode Control of Uncertain Chaotic Systems
verfasst von
Anchan Saxena
Apeksha Tandon
Awadhi Saxena
K. P. S. Rana
Vineet Kumar
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_13