Skip to main content
Erschienen in: Acta Mechanica 6/2020

04.03.2020 | Original Paper

On the transverse indentation moduli of high-performance KM2 single fibers using a curved area function

verfasst von: Prashanth Turla, Hinal Patel, Assimina A. Pelegri

Erschienen in: Acta Mechanica | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoindentation of single microscale fibers is a challenging task due to the dimensional similarity of the probing instruments to the single-fiber cross sections. Algorithms customarily used in nanoindentation equipment assume that the indentation occurs in flat surfaces, thus simplifying the local geometry and approximating material properties in curved specimens. A modified Curved Area Function (mCAF) is developed using finite element analysis and tested using nanoindentation measurements of high-performance single microfibers. The mCAF accounts for the dimensions and curvature in the transverse direction of the cylindrical microfiber in conjunction with the contact depth and the impression of the indented area. The transverse direction indentation modulus of a \(12\,\upmu \hbox {m}\) of \(\hbox {Kevlar}^{\textregistered }\) KM2 fiber was estimated as \(7.76\, \pm \,0.22\) GPa. The computational results were corroborated with experimental measurements performed on KM2 single fibers and agreed with literature findings that assumed minor differences in testing equipment, area analysis, and projected surface area. Two geometry-related coefficients \( C_{0}\) and \(C_{1}\) were determined that facilitate simulation of fiber nanoindentations with diameters of \(d = 7, 15, 30, 40,\) and \(50\,\upmu \hbox {m}\) with indentation depths up to, and including, \(2\,\upmu \hbox {m}\). The mCAF provided a narrow measurement error of \(\pm \,0.22\) GPa (2.8%) when compared to published studies using the semi-infinite plane approximation, reinforcing the suitability of the developed model.
Literatur
1.
Zurück zum Zitat Bencomo-Cisneros, J.A., Tejeda-Ochoa, A., García-Estrada, J.A., Herrera-Ramírez, C.A., Hurtado-Macías, A., Martínez-Sánchez, R., Herrera-Ramírez, J.M.: Characterization of Kevlar-29 fibers by tensile tests and nanoindentation. J. Alloys Compd. 536, S456–S459 (2012)CrossRef Bencomo-Cisneros, J.A., Tejeda-Ochoa, A., García-Estrada, J.A., Herrera-Ramírez, C.A., Hurtado-Macías, A., Martínez-Sánchez, R., Herrera-Ramírez, J.M.: Characterization of Kevlar-29 fibers by tensile tests and nanoindentation. J. Alloys Compd. 536, S456–S459 (2012)CrossRef
2.
Zurück zum Zitat Bunsell, A.R.: The tensile and fatigue behaviour of Kevlar-49 (PRD-49) fibre. J. Mater. Sci. 10, 1300–1308 (1975)CrossRef Bunsell, A.R.: The tensile and fatigue behaviour of Kevlar-49 (PRD-49) fibre. J. Mater. Sci. 10, 1300–1308 (1975)CrossRef
3.
Zurück zum Zitat Hadley, D.W., Ward, I.M., Ward, J.: The transverse compression of anisotropic fiber monofilaments. Proc. R. Soc. A 285, 275–286 (1965) Hadley, D.W., Ward, I.M., Ward, J.: The transverse compression of anisotropic fiber monofilaments. Proc. R. Soc. A 285, 275–286 (1965)
4.
Zurück zum Zitat Pinnock, P.R., Ward, I.M., Wolfe, J.M.: The compression of anisotropic fiber monofilaments II. Proc. R. Soc. A 291, 267–278 (1966) Pinnock, P.R., Ward, I.M., Wolfe, J.M.: The compression of anisotropic fiber monofilaments II. Proc. R. Soc. A 291, 267–278 (1966)
5.
Zurück zum Zitat Rector, J.H., Slaman, M., Verdoold, R., Iannuzzi, D., Beekmans, S.V.: Optimization of the batch production of silicon fiber-top MEMS devices. J. Micromech. Microeng. 27, 1–10 (2017)CrossRef Rector, J.H., Slaman, M., Verdoold, R., Iannuzzi, D., Beekmans, S.V.: Optimization of the batch production of silicon fiber-top MEMS devices. J. Micromech. Microeng. 27, 1–10 (2017)CrossRef
6.
Zurück zum Zitat Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef
7.
Zurück zum Zitat Poon, B., Rittel, D., Ravichandran, G.: An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 45, 6018–6033 (2008)CrossRef Poon, B., Rittel, D., Ravichandran, G.: An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 45, 6018–6033 (2008)CrossRef
8.
Zurück zum Zitat Bhushan, B.: Depth-sensing nanoindentation measurement techniques and applications. Microsyst. Technol. 23, 1595–1649 (2017)CrossRef Bhushan, B.: Depth-sensing nanoindentation measurement techniques and applications. Microsyst. Technol. 23, 1595–1649 (2017)CrossRef
9.
Zurück zum Zitat Wierenga, P.E., Franken, A.J.J.: Ultramicroindentation apparatus for the mechanical characterization of thin films. J. Appl. Phys. 55, 4244–4247 (1984)CrossRef Wierenga, P.E., Franken, A.J.J.: Ultramicroindentation apparatus for the mechanical characterization of thin films. J. Appl. Phys. 55, 4244–4247 (1984)CrossRef
10.
Zurück zum Zitat Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)CrossRef Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)CrossRef
11.
Zurück zum Zitat Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)CrossRef Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)CrossRef
12.
Zurück zum Zitat Garrido Maneiro, M.A., Rodríguez, J.: Pile-up effect on nanoindentation tests with spherical-conical tips. Scr. Mater. 52, 593–598 (2005)CrossRef Garrido Maneiro, M.A., Rodríguez, J.: Pile-up effect on nanoindentation tests with spherical-conical tips. Scr. Mater. 52, 593–598 (2005)CrossRef
13.
Zurück zum Zitat Sargent, P.M., Page, T.F.: The possible effect of elastic recovery on the microhardness of anisotropic materials. Scr. Metall. 15, 245–250 (1981)CrossRef Sargent, P.M., Page, T.F.: The possible effect of elastic recovery on the microhardness of anisotropic materials. Scr. Metall. 15, 245–250 (1981)CrossRef
14.
Zurück zum Zitat Kalman, D.P., Merrill, R.L., Wagner, N.J., Wetzel, E.D.: Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1, 2602–2612 (2009)CrossRef Kalman, D.P., Merrill, R.L., Wagner, N.J., Wetzel, E.D.: Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1, 2602–2612 (2009)CrossRef
15.
Zurück zum Zitat Decker, M.J., Egres, R.G., Wetzel, E.D., Wagner, N.J.: Low velocity ballistic properties of shear thickening fluid (STF)-fabric composites. In: Proceedings of 22nd International Symposium International Symposium on Ballistics, pp. 18–25 (2005) Decker, M.J., Egres, R.G., Wetzel, E.D., Wagner, N.J.: Low velocity ballistic properties of shear thickening fluid (STF)-fabric composites. In: Proceedings of 22nd International Symposium International Symposium on Ballistics, pp. 18–25 (2005)
16.
Zurück zum Zitat Riekel, C., Davies, R.J.: Applications of synchrotron radiation micro-focus techniques to the study of polymer and biopolymer fibers. Curr. Opin. Colloid Interface Sci. 9, 396–403 (2005)CrossRef Riekel, C., Davies, R.J.: Applications of synchrotron radiation micro-focus techniques to the study of polymer and biopolymer fibers. Curr. Opin. Colloid Interface Sci. 9, 396–403 (2005)CrossRef
17.
Zurück zum Zitat Li, S.F.Y., McGhie, A.J., Tang, S.L.: Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J. Vac. Sci. Technol. A 12, 1891–1894 (1994)CrossRef Li, S.F.Y., McGhie, A.J., Tang, S.L.: Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J. Vac. Sci. Technol. A 12, 1891–1894 (1994)CrossRef
18.
Zurück zum Zitat Gindl, W., Schöberl, T.: The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos. Part A 35, 1345–1349 (2004)CrossRef Gindl, W., Schöberl, T.: The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos. Part A 35, 1345–1349 (2004)CrossRef
19.
Zurück zum Zitat Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223–1245 (1994)CrossRef Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223–1245 (1994)CrossRef
20.
Zurück zum Zitat Pharr, G.M., Herbert, E.G., Gao, Y.: The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010)CrossRef Pharr, G.M., Herbert, E.G., Gao, Y.: The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010)CrossRef
21.
Zurück zum Zitat Ghanbari, S., Bahr, D.F.: An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials. J. Mater. Res. 34(7), 1121–1129 (2019)CrossRef Ghanbari, S., Bahr, D.F.: An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials. J. Mater. Res. 34(7), 1121–1129 (2019)CrossRef
22.
Zurück zum Zitat Cheng, M., Chen, W., Weerasooriya, T.: Mechanical Properties of Kevlar®KM2 Single Fiber. J. Eng. Mater. Technol. 127, 197–203 (2005)CrossRef Cheng, M., Chen, W., Weerasooriya, T.: Mechanical Properties of Kevlar®KM2 Single Fiber. J. Eng. Mater. Technol. 127, 197–203 (2005)CrossRef
23.
Zurück zum Zitat Deteresa, S.J., Allen, S.R., Farris, R.J., Porter, R.S.: Compressive and torsional behaviour of Kevlar 49 fibre. J. Mater. Sci. 19, 57–72 (1984)CrossRef Deteresa, S.J., Allen, S.R., Farris, R.J., Porter, R.S.: Compressive and torsional behaviour of Kevlar 49 fibre. J. Mater. Sci. 19, 57–72 (1984)CrossRef
24.
Zurück zum Zitat McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Evaluation of the three-dimensional properties of Kevlar across length scales. J. Mater. Res. 27(14), 1824–1837 (2012)CrossRef McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Evaluation of the three-dimensional properties of Kevlar across length scales. J. Mater. Res. 27(14), 1824–1837 (2012)CrossRef
25.
Zurück zum Zitat McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Nonlinear indentation of fibers. J. Mater. Res. 27(1), 197–213 (2012)CrossRef McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Nonlinear indentation of fibers. J. Mater. Res. 27(1), 197–213 (2012)CrossRef
26.
Zurück zum Zitat Cole, D.P., Strawhecker, K.E.: An improved instrumented indentation technique for single microfibers. J. Mater. Res. 29(9), 1104–1112 (2014)CrossRef Cole, D.P., Strawhecker, K.E.: An improved instrumented indentation technique for single microfibers. J. Mater. Res. 29(9), 1104–1112 (2014)CrossRef
27.
Zurück zum Zitat Kawabata, S.: Measurement of the transverse mechanical properties of high-performance fibres. J. Text. Inst. 81, 432–447 (1990)CrossRef Kawabata, S.: Measurement of the transverse mechanical properties of high-performance fibres. J. Text. Inst. 81, 432–447 (1990)CrossRef
28.
Zurück zum Zitat Leal, A.A., Deitzel, J.M., Gillespie Jr., J.W.: Compressive strength analysis for high performance fibers with different modulus in tension and compression. J. Compos. Mater. 43, 661–674 (2009)CrossRef Leal, A.A., Deitzel, J.M., Gillespie Jr., J.W.: Compressive strength analysis for high performance fibers with different modulus in tension and compression. J. Compos. Mater. 43, 661–674 (2009)CrossRef
29.
Zurück zum Zitat Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part I Single fiber transverse compression testing. J. Mater. Sci. 35, 573–581 (2000)CrossRef Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part I Single fiber transverse compression testing. J. Mater. Sci. 35, 573–581 (2000)CrossRef
30.
Zurück zum Zitat Singletary, J., Davis, H., Song, Y., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part II Fiber transverse structure. J. Mater. Sci. 35, 583–592 (2000)CrossRef Singletary, J., Davis, H., Song, Y., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part II Fiber transverse structure. J. Mater. Sci. 35, 583–592 (2000)CrossRef
31.
Zurück zum Zitat Raju, H., Pelegri, A.A.: Experimental investigation of transverse mechanical properties of high-performance Kevlar KM2 single fiber. In: ASME 2017 International Mechanical Engineering Congress and Exposition V014T11A045 (2017) Raju, H., Pelegri, A.A.: Experimental investigation of transverse mechanical properties of high-performance Kevlar KM2 single fiber. In: ASME 2017 International Mechanical Engineering Congress and Exposition V014T11A045 (2017)
32.
Zurück zum Zitat Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)CrossRef Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)CrossRef
33.
Zurück zum Zitat Pharr, G.M., Strader, J.H., Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653–666 (2009)CrossRef Pharr, G.M., Strader, J.H., Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653–666 (2009)CrossRef
34.
Zurück zum Zitat Hanson, M.T.: The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech. 59, S123–S130 (1992)CrossRef Hanson, M.T.: The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech. 59, S123–S130 (1992)CrossRef
35.
Zurück zum Zitat Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transverse isotropy. J. Tribol. 114, 606–611 (1992)CrossRef Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transverse isotropy. J. Tribol. 114, 606–611 (1992)CrossRef
36.
Zurück zum Zitat Chicot, D., Yetna N’Jock, M., Puchi-Cabrera, E.S., Iost, A., Staia, M.H., Louis, G., Bouscarrat, G., Aumaitre, R.: A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film. Thin Solid Films 558, 259–266 (2014)CrossRef Chicot, D., Yetna N’Jock, M., Puchi-Cabrera, E.S., Iost, A., Staia, M.H., Louis, G., Bouscarrat, G., Aumaitre, R.: A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film. Thin Solid Films 558, 259–266 (2014)CrossRef
37.
Zurück zum Zitat Sakharova, N.A., Fernandes, J.V., Antunes, J.M., Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095–1104 (2009)CrossRef Sakharova, N.A., Fernandes, J.V., Antunes, J.M., Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095–1104 (2009)CrossRef
38.
Zurück zum Zitat Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 31, 2395–2405 (1998)CrossRef Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 31, 2395–2405 (1998)CrossRef
39.
Zurück zum Zitat Wang, J.S., Zheng, X.J., Zheng, H., Zhu, Z., Song, S.T.: Evaluation of the substrate effect on indentation behavior of film/substrate system. Appl. Surf. Sci. 256, 5998–6002 (2010)CrossRef Wang, J.S., Zheng, X.J., Zheng, H., Zhu, Z., Song, S.T.: Evaluation of the substrate effect on indentation behavior of film/substrate system. Appl. Surf. Sci. 256, 5998–6002 (2010)CrossRef
40.
Zurück zum Zitat Jiang, W.G., Su, J.J., Feng, X.Q.: Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965–4972 (2008)CrossRef Jiang, W.G., Su, J.J., Feng, X.Q.: Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965–4972 (2008)CrossRef
41.
Zurück zum Zitat Nano Test Vantage User Manual, Indenter Area Function, Micro Materials Ltd Excellence in Nano-mechanics Nano Test Vantage User Manual, Indenter Area Function, Micro Materials Ltd Excellence in Nano-mechanics
42.
Zurück zum Zitat Sahin, K., Clawson, J.K., Singletary, J., Horner, S., Zheng, J., Pelegri, A.A., Chasiotis, I.: Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer 140, 96–106 (2018)CrossRef Sahin, K., Clawson, J.K., Singletary, J., Horner, S., Zheng, J., Pelegri, A.A., Chasiotis, I.: Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer 140, 96–106 (2018)CrossRef
43.
Zurück zum Zitat Swadener, J.G., Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag. A 81, 447–466 (2001)CrossRef Swadener, J.G., Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag. A 81, 447–466 (2001)CrossRef
Metadaten
Titel
On the transverse indentation moduli of high-performance KM2 single fibers using a curved area function
verfasst von
Prashanth Turla
Hinal Patel
Assimina A. Pelegri
Publikationsdatum
04.03.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 6/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02645-3

Weitere Artikel der Ausgabe 6/2020

Acta Mechanica 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.