Skip to main content

2017 | OriginalPaper | Buchkapitel

On the Use of Cable-Driven Robots in Early Inpatient Stroke Rehabilitation

verfasst von : G. Rosati, S. Masiero, A. Rossi

Erschienen in: Advances in Italian Mechanism Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cable-driven robots are a special class of manipulators in which the end-effector is actuated by cables, rather than by actuators connected to rigid links. Their use in early inpatient stroke rehabilitation has been extensively investigated by the research group led by Prof. Aldo Rossi at University of Padua, Italy. Both cable suspended solutions (NeReBot, MariBot) and planar designs (Sophia-3) have been considered. Among them the NeReBot, a prototype underactuated cable suspended robot, has been clinically tested in early upper-limb rehabilitation of severely impaired stroke survivors. Results were encouraging, both with additional and with substitutive robotic treatment protocols, in comparison to standard stroke rehabilitation therapy. This paper presents the concept, results and benefits provided by the use of cable robot technology in stroke rehabilitation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Albus J, Bostelman R, Dagalakis N (1992) The NIST robocrane. J Robot Syst 10(5) Albus J, Bostelman R, Dagalakis N (1992) The NIST robocrane. J Robot Syst 10(5)
2.
Zurück zum Zitat Bosscher P et al (2006) Wrench-feasible workspace generation for cable-driven robots. IEEE Trans Robot 22(5):890–902CrossRef Bosscher P et al (2006) Wrench-feasible workspace generation for cable-driven robots. IEEE Trans Robot 22(5):890–902CrossRef
3.
Zurück zum Zitat Carricato M, Merlet J-P (2013) Stability analysis of underconstrained cable-driven parallel robots. IEEE Trans Robot 29(1):288–296CrossRef Carricato M, Merlet J-P (2013) Stability analysis of underconstrained cable-driven parallel robots. IEEE Trans Robot 29(1):288–296CrossRef
4.
Zurück zum Zitat Castelli G, Ottaviano E (2010) Modelling, simulation and testing of a reconfigurable cable-based parallel manipulator as motion aiding system. Appl Bionics Biomech 7(4):253–268CrossRef Castelli G, Ottaviano E (2010) Modelling, simulation and testing of a reconfigurable cable-based parallel manipulator as motion aiding system. Appl Bionics Biomech 7(4):253–268CrossRef
5.
Zurück zum Zitat Cone L (1985) Skycam:an aerial robotic camera system. Byte 10(10):122–132 Cone L (1985) Skycam:an aerial robotic camera system. Byte 10(10):122–132
6.
Zurück zum Zitat Fanin C, Gallina P, Rossi A, Zanatta U, Masiero S (2003) Nerebot: a wire-based robot for neurorehabilitation. In: Proceedings of the IEEE 8th international conference on rehabilitation robotics. Seoul (Korea), p 2327 Fanin C, Gallina P, Rossi A, Zanatta U, Masiero S (2003) Nerebot: a wire-based robot for neurorehabilitation. In: Proceedings of the IEEE 8th international conference on rehabilitation robotics. Seoul (Korea), p 2327
7.
Zurück zum Zitat Gallina P, Rosati G (2002) Manipulability of a planar wire driven haptic device. Mech Mach Theory 37(2):215–228CrossRefMATH Gallina P, Rosati G (2002) Manipulability of a planar wire driven haptic device. Mech Mach Theory 37(2):215–228CrossRefMATH
8.
Zurück zum Zitat Gallina P, Rosati G, Rossi A (2001) 3-d.o.f. wire driven planar haptic interface. J Intell Robot Syst 32(1):23–36CrossRefMATH Gallina P, Rosati G, Rossi A (2001) 3-d.o.f. wire driven planar haptic interface. J Intell Robot Syst 32(1):23–36CrossRefMATH
9.
Zurück zum Zitat Gosselin C (2014) Cable-driven parallel mechanisms: state of the art and perspectives. Mech Eng Rev 1(1):1–17CrossRef Gosselin C (2014) Cable-driven parallel mechanisms: state of the art and perspectives. Mech Eng Rev 1(1):1–17CrossRef
10.
Zurück zum Zitat Harwin W, Patton J, Edgerton V (2006) Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE 94(9):1717–1726CrossRef Harwin W, Patton J, Edgerton V (2006) Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE 94(9):1717–1726CrossRef
11.
Zurück zum Zitat Kwakkel G, Kollen BJ, Krebs HI (2007) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation Neural Repair 22:111–121CrossRef Kwakkel G, Kollen BJ, Krebs HI (2007) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation Neural Repair 22:111–121CrossRef
12.
Zurück zum Zitat Lloyd-Jones D et al (2009) Heart disease and stroke statistics-2009 update: a report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 119:e21–e181CrossRef Lloyd-Jones D et al (2009) Heart disease and stroke statistics-2009 update: a report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 119:e21–e181CrossRef
13.
Zurück zum Zitat Masiero S, Armani M, Ferlini G, Rosati G, Rossi A (2014a) Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabilitation Neural Repair 28(4):377–386CrossRef Masiero S, Armani M, Ferlini G, Rosati G, Rossi A (2014a) Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabilitation Neural Repair 28(4):377–386CrossRef
14.
Zurück zum Zitat Masiero S, Carraro E, Ferraro C, Gallina P, Rossi A, Rosati G (2009) Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua Italy. J Rehabil Med 41(12):981–985CrossRef Masiero S, Carraro E, Ferraro C, Gallina P, Rossi A, Rosati G (2009) Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua Italy. J Rehabil Med 41(12):981–985CrossRef
15.
Zurück zum Zitat Masiero S, Celia A, Armani M, Rosati G (2006) A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res 18(6):531–535CrossRef Masiero S, Celia A, Armani M, Rosati G (2006) A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res 18(6):531–535CrossRef
16.
Zurück zum Zitat Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88(2):142–149CrossRef Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88(2):142–149CrossRef
17.
Zurück zum Zitat Masiero S et al (2011) Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabi Res Dev 48(4):355–366CrossRef Masiero S et al (2011) Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabi Res Dev 48(4):355–366CrossRef
18.
Zurück zum Zitat Masiero S, Poli P, Armani M, Ferlini G, Rizziello R, Rosati G (2014) Robotic upper limb rehabilitation after acute stroke by nerebot: Evaluation of treatment costs. BioMed Res Int Masiero S, Poli P, Armani M, Ferlini G, Rizziello R, Rosati G (2014) Robotic upper limb rehabilitation after acute stroke by nerebot: Evaluation of treatment costs. BioMed Res Int
19.
Zurück zum Zitat Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G (2014c) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11(2):187–198CrossRef Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G (2014c) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11(2):187–198CrossRef
20.
Zurück zum Zitat Mehrholz J et al (2012) Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev (Online) 6:CD006876 Mehrholz J et al (2012) Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev (Online) 6:CD006876
21.
Zurück zum Zitat Merlet J-P, Daney D (2010) A portable, modular parallel wire crane for rescue operations, pp 2834–2839 Merlet J-P, Daney D (2010) A portable, modular parallel wire crane for rescue operations, pp 2834–2839
22.
Zurück zum Zitat Minto S, Zanotto D, Boggsy E, Rosati G, Agrawal S (2016) Validation of a footwear-based gait analysis system with action-related feedback. IEEE Trans Neural Syst Rehabil Eng Minto S, Zanotto D, Boggsy E, Rosati G, Agrawal S (2016) Validation of a footwear-based gait analysis system with action-related feedback. IEEE Trans Neural Syst Rehabil Eng
23.
Zurück zum Zitat Mustafa S, Lim W, Yang G, Yeo S, Lin W, Agrawal S (2015) Cable-driven robots. Handb Manuf Eng Technol Mustafa S, Lim W, Yang G, Yeo S, Lin W, Agrawal S (2015) Cable-driven robots. Handb Manuf Eng Technol
24.
Zurück zum Zitat Oscari F, Finetto C, Kautz S, Rosati G (2016) Changes in muscle coordination patterns induced by exposure to a viscous force field. J NeuroEngin Rehabil Oscari F, Finetto C, Kautz S, Rosati G (2016) Changes in muscle coordination patterns induced by exposure to a viscous force field. J NeuroEngin Rehabil
25.
Zurück zum Zitat Oscari F, Secoli R, Avanzini F, Rosati G, Reinkensmeyer DJ (2012) Substituting auditory for visual feedback to adapt to altered dynamic and kinematic environments during reaching. Exp Brain Res 221(1):33–41CrossRef Oscari F, Secoli R, Avanzini F, Rosati G, Reinkensmeyer DJ (2012) Substituting auditory for visual feedback to adapt to altered dynamic and kinematic environments during reaching. Exp Brain Res 221(1):33–41CrossRef
26.
Zurück zum Zitat Poli P, Morone G, Rosati G, Masiero S (2013) Robotic technologies and rehabilitation: new tools for stroke patients therapy. BioMed Res Int 2013(153872):1–8CrossRef Poli P, Morone G, Rosati G, Masiero S (2013) Robotic technologies and rehabilitation: new tools for stroke patients therapy. BioMed Res Int 2013(153872):1–8CrossRef
27.
Zurück zum Zitat Rosati G (2010) The place of robotics in post-stroke rehabilitation. Expert Rev Med Devices 7(6):753–758. Invited Paper Rosati G (2010) The place of robotics in post-stroke rehabilitation. Expert Rev Med Devices 7(6):753–758. Invited Paper
28.
Zurück zum Zitat Rosati G, Andreolli M, Biondi A, Gallina P (2007) Performance of cable suspended robots for upper limb rehabilitation. In: Proceedings of the IEEE 10th international conference on rehabilitation robotics. Noordwijk, The Netherlands, pp 385–392 Rosati G, Andreolli M, Biondi A, Gallina P (2007) Performance of cable suspended robots for upper limb rehabilitation. In: Proceedings of the IEEE 10th international conference on rehabilitation robotics. Noordwijk, The Netherlands, pp 385–392
29.
Zurück zum Zitat Rosati G et al (2011) On the design of adaptive cable-driven systems. J Mech Robot-Trans ASME 3(2):021004 Rosati G et al (2011) On the design of adaptive cable-driven systems. J Mech Robot-Trans ASME 3(2):021004
30.
Zurück zum Zitat Rosati G et al (2012) Effect of task-related continuous auditory feedback during learning of tracking motion exercises. J NeuroEng Rehabil 9(79) Rosati G et al (2012) Effect of task-related continuous auditory feedback during learning of tracking motion exercises. J NeuroEng Rehabil 9(79)
31.
Zurück zum Zitat Rosati G et al (2014) Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field. IEEE Trans Haptics 7(2):251–263MathSciNetCrossRef Rosati G et al (2014) Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field. IEEE Trans Haptics 7(2):251–263MathSciNetCrossRef
32.
Zurück zum Zitat Rosati G, Gallina P, Masiero S (2007b) Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(4):560–569CrossRef Rosati G, Gallina P, Masiero S (2007b) Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(4):560–569CrossRef
33.
Zurück zum Zitat Rosati G, Gallina P, Masiero S, Rossi A (2005) Design of a new 5 d.o.f. wire-based robot for rehabilitation. In: Proceedings of the IEEE 9th international conference on rehabilitation robotics. Chicago, IL, USA, pp 430–433 Rosati G, Gallina P, Masiero S, Rossi A (2005) Design of a new 5 d.o.f. wire-based robot for rehabilitation. In: Proceedings of the IEEE 9th international conference on rehabilitation robotics. Chicago, IL, USA, pp 430–433
34.
Zurück zum Zitat Rosati G, Roda A, Avanzini F, Masiero S (2013) On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. Comput Intell Neurosci 2013(586138):1–15CrossRef Rosati G, Roda A, Avanzini F, Masiero S (2013) On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. Comput Intell Neurosci 2013(586138):1–15CrossRef
35.
Zurück zum Zitat Rosati G, Secoli R, Zanotto D, Rossi A, Boschetti G (2008) Planar robotic systems for upper-limb post-stroke rehabilitation. In: Proceedings of the (2008) ASME international mechanical engineering congress & exposition, Boston, MA, USA Rosati G, Secoli R, Zanotto D, Rossi A, Boschetti G (2008) Planar robotic systems for upper-limb post-stroke rehabilitation. In: Proceedings of the (2008) ASME international mechanical engineering congress & exposition, Boston, MA, USA
36.
Zurück zum Zitat Rosati G, Zanotto D, Secoli R, Rossi A (2009) Design and control of two planar cable-driven robots for upper-limb neurorehabilitation. In: Proceedings of the IEEE 11th international conference on rehabilitation robotics. Kyoto, Japan, pp 560–565 Rosati G, Zanotto D, Secoli R, Rossi A (2009) Design and control of two planar cable-driven robots for upper-limb neurorehabilitation. In: Proceedings of the IEEE 11th international conference on rehabilitation robotics. Kyoto, Japan, pp 560–565
37.
Zurück zum Zitat Schmidt R (1998) Motor control and learning. Human Kinetics Publishers Schmidt R (1998) Motor control and learning. Human Kinetics Publishers
38.
Zurück zum Zitat Secoli R, Milot M-H, Rosati G, Reinkensmeyer DJ (2011) Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke. J NeuroEng Rehabil 8(21) Secoli R, Milot M-H, Rosati G, Reinkensmeyer DJ (2011) Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke. J NeuroEng Rehabil 8(21)
39.
Zurück zum Zitat Tadokoro S, Kobayashi S (2002) A portable parallel motion platform for urban search and surveillance in disasters. Adv Robot 16(6):537–540CrossRef Tadokoro S, Kobayashi S (2002) A portable parallel motion platform for urban search and surveillance in disasters. Adv Robot 16(6):537–540CrossRef
40.
Zurück zum Zitat Timmermans AA et al (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6(1) Timmermans AA et al (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6(1)
41.
Zurück zum Zitat Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):286–297CrossRef Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):286–297CrossRef
42.
Zurück zum Zitat Zanotto D et al (2013) Effects of complementary auditory feedback in robot-assisted lower extremity motor adaptation. IEEE Trans Neural Syst Rehabil Eng 21(5):775–786CrossRef Zanotto D et al (2013) Effects of complementary auditory feedback in robot-assisted lower extremity motor adaptation. IEEE Trans Neural Syst Rehabil Eng 21(5):775–786CrossRef
43.
Zurück zum Zitat Zanotto D et al (2014) Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Trans Robot 30(4):974–979CrossRef Zanotto D et al (2014) Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Trans Robot 30(4):974–979CrossRef
Metadaten
Titel
On the Use of Cable-Driven Robots in Early Inpatient Stroke Rehabilitation
verfasst von
G. Rosati
S. Masiero
A. Rossi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-48375-7_59

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.