Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.11.2017 | Focus | Ausgabe 18/2018

Soft Computing 18/2018

On the value of parameter tuning in heterogeneous ensembles effort estimation

Zeitschrift:
Soft Computing > Ausgabe 18/2018
Autoren:
Mohamed Hosni, Ali Idri, Alain Abran, Ali Bou Nassif
Wichtige Hinweise
Communicated by S. Deb, T. Hanne, K.C. Wong.

Abstract

Accurate estimation of software development effort estimation (SDEE) is fundamental for efficient management of software development projects as it assists software managers to efficiently manage their human resources. Over the last four decades, while software engineering researchers have used several effort estimation techniques, including those based on statistical and machine learning methods, no consensus has been reached on the technique that can perform best in all circumstances. To tackle this challenge, Ensemble Effort Estimation, which predicts software development effort by combining more than one solo estimation technique, has recently been investigated. In this paper, heterogeneous ensembles based on four well-known machine learning techniques (K-nearest neighbor, support vector regression, multilayer perceptron and decision trees) were developed and evaluated by investigating the impact of parameter values of the ensemble members on estimation accuracy. In particular, this paper evaluates whether setting ensemble parameters using two optimization techniques (e.g., grid search optimization and particle swarm) permits more accurate estimates of SDEE. The heterogeneous ensembles of this study were built using three combination rules (mean, median and inverse ranked weighted mean) over seven datasets. The results obtained suggest that: (1) Optimized single techniques using grid search or particle swarm optimization provide more accurate estimation; (2) in general ensembles achieve higher accuracy than their single techniques whatever the optimization technique used, even though ensembles do not dominate over all single techniques; (3) heterogeneous ensembles based on optimized single techniques provide more accurate estimation; and (4) generally, particle swarm optimization and grid search techniques generate ensembles with the same predictive capability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 18/2018

Soft Computing 18/2018 Zur Ausgabe

Premium Partner

    Bildnachweise