Skip to main content
Erschienen in: Journal of Materials Science 18/2021

16.03.2021 | Energy materials

One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ion battery anodes

verfasst von: Zhenghui Li, Weihao Zhong, Dejian Cheng, Haiyan Zhang

Erschienen in: Journal of Materials Science | Ausgabe 18/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bismuth has been deemed to be the promising anode material for sodium-ion batteries on account of large volumetric capacity (3800 mAh cm−3) and high electrical conductivity. However, huge volume change during sodiation/desodiation usually causes pulverization of electrode, leading to poor rate performance and cycling stability. Herein, one-step large-scale fabrication of bismuth@N-doped carbon (Bi@C) is proposed to construct well-behaved electrode materials for sodium-ion batteries. Surprisingly, the Bi@C anode presents superior sodium storage performance, manifesting a high specific capacity (346 mAh g−1 at 0.1 A g−1), excellent rate stability (274 mAh g−1 under ultrahigh current density of 50 A g−1) and long life span (344 mAh g−1 at 1 A g−1 after cycling over 1500 times, 0.003% loss per cycle). Such excellent performances of Bi@C are attributed to the nano-sized Bi particles (~ 15 nm) encapsulated by thin carbon layer doped with N. These structural characteristics optimize the ion transfer and increase the accessible area between electrode and electrolyte, and then give a high capacitive contribution to the capacity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Assat G, Tarascon J-M (2018) Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy 3:373–386 Assat G, Tarascon J-M (2018) Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy 3:373–386
2.
Zurück zum Zitat Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561 Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561
3.
Zurück zum Zitat Winter M, Barnett B, Xu K (2018) Before li ion batteries. Chem Rev 118:11433–11456 Winter M, Barnett B, Xu K (2018) Before li ion batteries. Chem Rev 118:11433–11456
4.
Zurück zum Zitat Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176 Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176
6.
Zurück zum Zitat Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120 Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120
7.
Zurück zum Zitat Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614 Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614
8.
Zurück zum Zitat Yang D, Li S, Cheng D et al (2021) Nitrogen, sulfur, and phosphorus codoped hollow carbon microtubes derived from silver willow blossoms as a high-performance anode for sodium-ion batteries. Energy Fuels 35:2795–2804 Yang D, Li S, Cheng D et al (2021) Nitrogen, sulfur, and phosphorus codoped hollow carbon microtubes derived from silver willow blossoms as a high-performance anode for sodium-ion batteries. Energy Fuels 35:2795–2804
9.
Zurück zum Zitat Xie F, Zhang L, Ye C, Jaroniec M, Qiao SZ (2019) The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv Mater 31:1800492 Xie F, Zhang L, Ye C, Jaroniec M, Qiao SZ (2019) The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv Mater 31:1800492
10.
Zurück zum Zitat Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682 Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682
11.
Zurück zum Zitat Wang L, Wang C, Li F, Cheng F, Chen J (2017) In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun 54:38–41 Wang L, Wang C, Li F, Cheng F, Chen J (2017) In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun 54:38–41
12.
Zurück zum Zitat Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G (2016) An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ Sci 9:3399–3405 Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G (2016) An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ Sci 9:3399–3405
14.
Zurück zum Zitat Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T (2018) From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater 8:1703268 Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T (2018) From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater 8:1703268
15.
Zurück zum Zitat Xiao B, Rojo T, Li X (2019) Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem 12:133–144 Xiao B, Rojo T, Li X (2019) Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem 12:133–144
16.
Zurück zum Zitat Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866 Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866
17.
Zurück zum Zitat Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884 Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884
18.
Zurück zum Zitat Kubota K, Komaba S (2015) Review—practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162:A2538–A2550 Kubota K, Komaba S (2015) Review—practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162:A2538–A2550
19.
Zurück zum Zitat Zou G, Hou H, Ge P et al (2018) Metal-organic framework-derived materials for sodium energy storage. Small 14:1702648 Zou G, Hou H, Ge P et al (2018) Metal-organic framework-derived materials for sodium energy storage. Small 14:1702648
20.
Zurück zum Zitat Alvin S, Yoon D, Chandra C et al (2019) Revealing sodium ion storage mechanism in hard carbon. Carbon 145:67–81 Alvin S, Yoon D, Chandra C et al (2019) Revealing sodium ion storage mechanism in hard carbon. Carbon 145:67–81
21.
Zurück zum Zitat Jin Q, Li W, Wang K et al (2019) Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. J Mater Chem A 7:10239–10245 Jin Q, Li W, Wang K et al (2019) Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. J Mater Chem A 7:10239–10245
22.
Zurück zum Zitat Xu F, Qiu Y, Han H et al (2020) Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage. Carbon 159:140–148 Xu F, Qiu Y, Han H et al (2020) Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage. Carbon 159:140–148
23.
Zurück zum Zitat Li X, Ni J, Savilov SV, Li L (2018) Materials based on antimony and bismuth for sodium storage. Chem Eur J 24:13719–13727 Li X, Ni J, Savilov SV, Li L (2018) Materials based on antimony and bismuth for sodium storage. Chem Eur J 24:13719–13727
24.
Zurück zum Zitat Gao H, Niu J, Zhang C, Peng Z, Zhang Z (2018) A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries. ACS Nano 12:3568–3577 Gao H, Niu J, Zhang C, Peng Z, Zhang Z (2018) A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries. ACS Nano 12:3568–3577
25.
Zurück zum Zitat Liu J, Yu L, Wu C et al (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17:2034–2042 Liu J, Yu L, Wu C et al (2017) New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett 17:2034–2042
26.
Zurück zum Zitat Ruiz O, Cochrane M, Li M et al (2018) Enhanced cycling stability of macroporous bulk antimony-based sodium-ion battery anodes enabled through active/inactive composites. Adv Energy Mater 8:1801781 Ruiz O, Cochrane M, Li M et al (2018) Enhanced cycling stability of macroporous bulk antimony-based sodium-ion battery anodes enabled through active/inactive composites. Adv Energy Mater 8:1801781
27.
Zurück zum Zitat Palaniselvam T, Goktas M, Anothumakkool B et al (2019) Sodium storage and electrode dynamics of tin–carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater 29:1900790 Palaniselvam T, Goktas M, Anothumakkool B et al (2019) Sodium storage and electrode dynamics of tin–carbon composite electrodes from bulk precursors for sodium-ion batteries. Adv Funct Mater 29:1900790
28.
Zurück zum Zitat Wang L, Voskanyan AA, Chan KY, Qin B, Li F (2019) Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Appl Energy Mater 3:565–572 Wang L, Voskanyan AA, Chan KY, Qin B, Li F (2019) Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Appl Energy Mater 3:565–572
29.
Zurück zum Zitat Yang H, Chen LW, He F et al (2020) Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett 20:758–767 Yang H, Chen LW, He F et al (2020) Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett 20:758–767
30.
Zurück zum Zitat Cheng X, Li D, Wu Y, Xu R, Yu Y (2019) Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A 7:4913–4921 Cheng X, Li D, Wu Y, Xu R, Yu Y (2019) Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A 7:4913–4921
31.
Zurück zum Zitat Liang L, Xu Y, Li Y et al (2017) Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A 5:1749–1755 Liang L, Xu Y, Li Y et al (2017) Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A 5:1749–1755
32.
Zurück zum Zitat Moradi M, Li Z, Qi J et al (2015) Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. Nano Lett 15:2917–2921 Moradi M, Li Z, Qi J et al (2015) Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. Nano Lett 15:2917–2921
33.
Zurück zum Zitat Webb SA, Baggetto L, Bridges CA, Veith GM (2014) The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources 248:1105–1117 Webb SA, Baggetto L, Bridges CA, Veith GM (2014) The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources 248:1105–1117
34.
Zurück zum Zitat Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y (2019) Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater 29:1809195 Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y (2019) Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater 29:1809195
35.
Zurück zum Zitat Chen J, Fan X, Ji X et al (2018) Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ Sci 11:1218–1225 Chen J, Fan X, Ji X et al (2018) Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ Sci 11:1218–1225
36.
Zurück zum Zitat Qiu J, Li S, Su X et al (2017) Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage. Chem Eng J 320:300–307 Qiu J, Li S, Su X et al (2017) Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage. Chem Eng J 320:300–307
37.
Zurück zum Zitat Sottmann J, Herrmann M, Vajeeston P et al (2016) How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater 28:2750–2756 Sottmann J, Herrmann M, Vajeeston P et al (2016) How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater 28:2750–2756
38.
Zurück zum Zitat Xu F, Zhai Y, Zhang E et al (2020) Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched n-doped porous carbon nanosheets. Angew Chem Int Ed 59:2–10 Xu F, Zhai Y, Zhang E et al (2020) Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched n-doped porous carbon nanosheets. Angew Chem Int Ed 59:2–10
39.
Zurück zum Zitat Li Z, Cheng A, Zhong W et al (2020) Facile fabrication of carbon nanosheets with hierarchically porous structure for high-performance supercapacitor. Microp Mesop Mater 306:110440 Li Z, Cheng A, Zhong W et al (2020) Facile fabrication of carbon nanosheets with hierarchically porous structure for high-performance supercapacitor. Microp Mesop Mater 306:110440
40.
Zurück zum Zitat Li Z, Yu P, Zhong W et al (2021) Hydrothermal intercalation for the synthesis of novel three-dimensional hierarchically superstructured carbons composed of graphene-like ultrathin nanosheets. Carbon 176:1–10 Li Z, Yu P, Zhong W et al (2021) Hydrothermal intercalation for the synthesis of novel three-dimensional hierarchically superstructured carbons composed of graphene-like ultrathin nanosheets. Carbon 176:1–10
41.
Zurück zum Zitat Wang C, Wang L, Li F, Cheng F, Chen J (2017) Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater 29:1702212 Wang C, Wang L, Li F, Cheng F, Chen J (2017) Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater 29:1702212
42.
Zurück zum Zitat Xiong P, Bai P, Li A et al (2019) Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater 31:1904771 Xiong P, Bai P, Li A et al (2019) Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater 31:1904771
43.
Zurück zum Zitat Liu S, Luo Z, Guo J, Pan A, Cai Z, Liang S (2017) Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem Commun 81:10–13 Liu S, Luo Z, Guo J, Pan A, Cai Z, Liang S (2017) Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem Commun 81:10–13
44.
Zurück zum Zitat Su D, Dou S, Wang G (2015) Bismuth: A new anode for the Na-ion battery. Nano Energy 12:88–95 Su D, Dou S, Wang G (2015) Bismuth: A new anode for the Na-ion battery. Nano Energy 12:88–95
45.
Zurück zum Zitat Xiang J, Liu Z, Song T (2018) Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries. ChemistrySelect 3:8973–8979 Xiang J, Liu Z, Song T (2018) Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries. ChemistrySelect 3:8973–8979
46.
Zurück zum Zitat Yang F, Yu F, Zhang Z, Zhang K, Lai Y, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338 Yang F, Yu F, Zhang Z, Zhang K, Lai Y, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338
47.
Zurück zum Zitat Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522 Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522
48.
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211 Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211
Metadaten
Titel
One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ion battery anodes
verfasst von
Zhenghui Li
Weihao Zhong
Dejian Cheng
Haiyan Zhang
Publikationsdatum
16.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05978-z

Weitere Artikel der Ausgabe 18/2021

Journal of Materials Science 18/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.