Skip to main content
Erschienen in: Journal of Materials Science 17/2018

06.06.2018 | Energy materials

Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries

verfasst von: Zijian Zheng, Qi Su, Qiao Zhang, Huan Ye, Zhengbang Wang

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Room-temperature Na-ion batteries have been widely used as promising energy storage systems for large-scale storage due to the nature abundance and low cost of Na. However, the search for an anode with appropriate Na storage and high structural stability still remains challenging. In this work, the carbon microsphere films-coated Ni foam is prepared by a simple chemical vapor deposition method and is used as a novel anode for the long-lifespan Na-ion batteries. These carbon microspheres possess special onion-like structures that enhance the Na-ions intercalation and exhibit excellent Na storage properties. In addition, directly coating the carbon microsphere films on Ni foam current collectors without binders and conductive additives results in an integrated electrode structure, which avoids the undesirable interfaces and reduces the packaging volume. Compared to the common used hard carbon anode with long discharge plateau and short lifespan, this integrated electrode exhibits a slope discharge profile with higher security and demonstrates a long lifespan of 700 cycles with a high capacity retention of 83%. Furthermore, the storage mechanism of sodium ion is also investigated in detail by ex situ Raman, X-ray diffraction and nuclear magnetic resonance techniques in this study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
2.
Zurück zum Zitat Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRef Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRef
3.
Zurück zum Zitat Wang F, Wang J, Ren H, Tang H, Yu R, Wang D (2016) Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg Chem Front 3:365–369CrossRef Wang F, Wang J, Ren H, Tang H, Yu R, Wang D (2016) Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg Chem Front 3:365–369CrossRef
5.
Zurück zum Zitat Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef
6.
Zurück zum Zitat You Y, Wu X-L, Yin Y-X, Guo Y-G (2013) A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mater Chem A 1:14061–14065CrossRef You Y, Wu X-L, Yin Y-X, Guo Y-G (2013) A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mater Chem A 1:14061–14065CrossRef
7.
Zurück zum Zitat Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Sodium ion batteries: free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater. https://doi.org/10.1002/aenm.201502217 Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Sodium ion batteries: free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater. https://​doi.​org/​10.​1002/​aenm.​201502217
8.
Zurück zum Zitat Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB (2014) Engraving copper foil to give large-scale binder-free porous Cuo arrays for a high-performance sodium-ion battery anode. Adv Mater 26:2273–2279CrossRef Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB (2014) Engraving copper foil to give large-scale binder-free porous Cuo arrays for a high-performance sodium-ion battery anode. Adv Mater 26:2273–2279CrossRef
10.
11.
Zurück zum Zitat Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0. 67Mn0. 67Ni0. 33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 128:7571–7575CrossRef Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0. 67Mn0. 67Ni0. 33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 128:7571–7575CrossRef
12.
Zurück zum Zitat Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900CrossRef Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900CrossRef
13.
Zurück zum Zitat Zhu C, Song K, Van Aken PA, Maier J, Yu Y (2014) Carbon-Coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180CrossRef Zhu C, Song K, Van Aken PA, Maier J, Yu Y (2014) Carbon-Coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180CrossRef
14.
Zurück zum Zitat Wang H, Liao X-Z, Yang Y, Yan X, He Y-S, Ma Z-F (2016) Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J Electrochem Soc 163:A565–A570CrossRef Wang H, Liao X-Z, Yang Y, Yan X, He Y-S, Ma Z-F (2016) Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J Electrochem Soc 163:A565–A570CrossRef
16.
Zurück zum Zitat Zheng Q, Yi H, Liu W, Li X, Zhang H (2017) Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim Acta 238:288–297CrossRef Zheng Q, Yi H, Liu W, Li X, Zhang H (2017) Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim Acta 238:288–297CrossRef
17.
Zurück zum Zitat Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15:565–573CrossRef Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15:565–573CrossRef
18.
Zurück zum Zitat Balogun M-S, Luo Y, Lyu F, Wang F, Yang H, Li H, Liang C, Huang M, Huang Y, Tong Y (2016) Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl Mater Interfaces 8:9733–9744CrossRef Balogun M-S, Luo Y, Lyu F, Wang F, Yang H, Li H, Liang C, Huang M, Huang Y, Tong Y (2016) Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl Mater Interfaces 8:9733–9744CrossRef
19.
Zurück zum Zitat Li L, Seng KH, Li D, Xia Y, Liu HK, Guo Z (2014) SnSb@Carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res 7:1466–1476CrossRef Li L, Seng KH, Li D, Xia Y, Liu HK, Guo Z (2014) SnSb@Carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res 7:1466–1476CrossRef
21.
Zurück zum Zitat Stevens D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef Stevens D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef
22.
Zurück zum Zitat Xu G, Li Z, Wei X, Yang L, Chu PK (2017) Monolithic hierarchical carbon assemblies embedded with mesoporous NaTi2(PO4)3 nanocrystals for flexible high-performance sodium anodes. Electrochim Acta 254:328–336CrossRef Xu G, Li Z, Wei X, Yang L, Chu PK (2017) Monolithic hierarchical carbon assemblies embedded with mesoporous NaTi2(PO4)3 nanocrystals for flexible high-performance sodium anodes. Electrochim Acta 254:328–336CrossRef
23.
Zurück zum Zitat Li M, Liu L, Wang P, Li J, Leng Q, Cao G (2017) Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim Acta 252:523–531CrossRef Li M, Liu L, Wang P, Li J, Leng Q, Cao G (2017) Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim Acta 252:523–531CrossRef
24.
Zurück zum Zitat Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017) Rose-like N-Doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30CrossRef Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017) Rose-like N-Doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30CrossRef
25.
Zurück zum Zitat Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634CrossRef Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634CrossRef
26.
Zurück zum Zitat Zhang N, Liu Y, Lu Y, Han X, Cheng F, Chen J (2015) Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res 8:3384–3393CrossRef Zhang N, Liu Y, Lu Y, Han X, Cheng F, Chen J (2015) Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res 8:3384–3393CrossRef
27.
Zurück zum Zitat Roh H-K, Kim H-K, Kim M-S, Kim D-H, Chung KY, Roh KC, Kim K-B (2016) In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res 9:1844–1855CrossRef Roh H-K, Kim H-K, Kim M-S, Kim D-H, Chung KY, Roh KC, Kim K-B (2016) In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res 9:1844–1855CrossRef
28.
Zurück zum Zitat Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef
29.
Zurück zum Zitat Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ion 28:1172–1175CrossRef Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ion 28:1172–1175CrossRef
30.
Zurück zum Zitat Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
31.
Zurück zum Zitat Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763CrossRef Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763CrossRef
32.
Zurück zum Zitat Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRef Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRef
33.
Zurück zum Zitat Wu X-L, Liu Q, Guo Y-G, Song W-G (2009) Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem Commun 11:1468–1471CrossRef Wu X-L, Liu Q, Guo Y-G, Song W-G (2009) Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem Commun 11:1468–1471CrossRef
34.
Zurück zum Zitat Yang S, Feng X, Zhi L, Cao Q, Maier J, Müllen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22:838–842CrossRef Yang S, Feng X, Zhi L, Cao Q, Maier J, Müllen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22:838–842CrossRef
36.
Zurück zum Zitat Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921CrossRef Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921CrossRef
37.
Zurück zum Zitat Ye H, Xin S, Yin Y-X, Li J-Y, Guo Y-G, Wan L-J (2017) Stable Li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc 139:5916–5922CrossRef Ye H, Xin S, Yin Y-X, Li J-Y, Guo Y-G, Wan L-J (2017) Stable Li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc 139:5916–5922CrossRef
38.
Zurück zum Zitat Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef
39.
Zurück zum Zitat Zhou X, Guo YG (2014) Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 1:83–86CrossRef Zhou X, Guo YG (2014) Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 1:83–86CrossRef
40.
Zurück zum Zitat Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590CrossRef Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590CrossRef
41.
Zurück zum Zitat Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418CrossRef Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418CrossRef
42.
Zurück zum Zitat Hardwick LJ, Ruch PW, Hahn M, Scheifele W, Kötz R, Novák P (2008) In situ raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J Phys Chem Solids 69:1232–1237CrossRef Hardwick LJ, Ruch PW, Hahn M, Scheifele W, Kötz R, Novák P (2008) In situ raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J Phys Chem Solids 69:1232–1237CrossRef
43.
Zurück zum Zitat Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef
44.
Zurück zum Zitat Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8:A222–A225CrossRef Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8:A222–A225CrossRef
45.
Zurück zum Zitat Bessada C, Anghel EM (2003) 11B, 23Na, 27Al, and 19F NMR study of solid and molten Na3AlF6–Na2B4O7. Inorg Chem 42:3884–3890CrossRef Bessada C, Anghel EM (2003) 11B, 23Na, 27Al, and 19F NMR study of solid and molten Na3AlF6–Na2B4O7. Inorg Chem 42:3884–3890CrossRef
46.
Zurück zum Zitat Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K (2013) NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J Power Sour 225:137–140CrossRef Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K (2013) NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J Power Sour 225:137–140CrossRef
48.
Zurück zum Zitat Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148:405–416CrossRef Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148:405–416CrossRef
49.
Zurück zum Zitat Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sour 89:206–218CrossRef Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sour 89:206–218CrossRef
50.
Zurück zum Zitat Ye H, Yin Y-X, Zhang S-F, Shi Y, Liu L, Zeng X-X, Wen R, Guo Y-G, Wan L-J (2017) Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36:411–417CrossRef Ye H, Yin Y-X, Zhang S-F, Shi Y, Liu L, Zeng X-X, Wen R, Guo Y-G, Wan L-J (2017) Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36:411–417CrossRef
51.
Zurück zum Zitat Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14:6016–6022CrossRef Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14:6016–6022CrossRef
Metadaten
Titel
Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries
verfasst von
Zijian Zheng
Qi Su
Qiao Zhang
Huan Ye
Zhengbang Wang
Publikationsdatum
06.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2515-x

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.