Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.12.2016 | Original Paper | Ausgabe 1-2/2017

Machine Vision and Applications 1-2/2017

Online human moves recognition through discriminative key poses and speed-aware action graphs

Zeitschrift:
Machine Vision and Applications > Ausgabe 1-2/2017
Autoren:
Thales Vieira, Romain Faugeroux, Dimas Martínez, Thomas Lewiner
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00138-016-0818-y) contains supplementary material, which is available to authorized users.

Abstract

Recognizing user-defined moves serves a large number of applications including sport monitoring, virtual reality or natural user interfaces (NUI). However, many of the efficient human move recognition methods are still limited to specific situations, such as straightforward NUI gestures or everyday human actions. In particular, most methods depend on a prior segmentation of recordings to both train and recognize moves. This segmentation step is generally performed manually or based on heuristics such as neutral poses or short pauses, limiting the range of applications. Besides, speed is generally not considered as a criterion to distinguish moves. We present an approach composed of a simplified move training phase that requires minimal user intervention, together with a novel online method to robustly recognize moves online from unsegmented data without requiring any transitional pauses or neutral poses, and additionally considering human move speed. Trained gestures are automatically segmented in real time by a curvature-based method that detects small pauses during a training session. A set of most discriminant key poses between different moves is also extracted in real time, optimizing the number of key poses. All together, this semi-supervised learning approach only requires continuous move performances from the user with small pauses. Key pose transitions and moves execution speeds are used as input to a novel human move recognition algorithm that recognizes unsegmented moves online, achieving high robustness and very low latency in our experiments, while also effective in distinguishing moves that differ only in speed.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Supplementary material 1 (mov 23113 KB)
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1-2/2017

Machine Vision and Applications 1-2/2017 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise