Skip to main content

2024 | OriginalPaper | Buchkapitel

Online Learning in Varying Feature Spaces with Informative Variation

verfasst von : Peijia Qin, Liyan Song

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most conventional literature on online learning implicitly assumes a static feature space. However, in real-world applications, the feature space may vary over time due to the emergence of new features and the vanishing of outdated features. This phenomenon is referred to as online learning with Varying Feature Space (VFS). Recently, there has been increasing attention towards exploring this online learning paradigm. However, none of the existing approaches have taken into account the potentially informative information conveyed by the presence or absence (i.e., variation in this paper) of each feature. This indicates that the existence of certain features in the VFS can be correlated with the class labels. If properly utilized for the learning process, such information can potentially enhance predictive performance. To this end, we formally define and present a learning framework to address this specific learning scenario, which we refer to as Online learning in Varying Feature space with Informative Variation (abbreviated as OVFIV). The framework aims to answer two key questions: how to learn a model that captures the association between the existence of features and the class labels, and how to incorporate this information into the prediction process to improve performance. The validity of our proposed method is verified through theoretical analyses and empirical studies conducted on 17 datasets from diverse fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alagurajah, J., Yuan, X., Wu, X.: Scale invariant learning from trapezoidal data streams. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 505–508 (2020) Alagurajah, J., Yuan, X., Wu, X.: Scale invariant learning from trapezoidal data streams. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 505–508 (2020)
2.
Zurück zum Zitat Asuncion, A., Newman, D.: UCI machine learning repository (2007) Asuncion, A., Newman, D.: UCI machine learning repository (2007)
3.
Zurück zum Zitat Beyazit, E., Alagurajah, J., Wu, X.: Online learning from data streams with varying feature spaces. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3232–3239 (2019) Beyazit, E., Alagurajah, J., Wu, X.: Online learning from data streams with varying feature spaces. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3232–3239 (2019)
4.
Zurück zum Zitat Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)CrossRef Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)CrossRef
5.
Zurück zum Zitat Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNet Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNet
6.
Zurück zum Zitat Gu, S., Qian, Y., Hou, C.: Incremental feature spaces learning with label scarcity. ACM Trans. Knowl. Discovery Data (TKDD) 16(6), 1–26 (2022)CrossRef Gu, S., Qian, Y., Hou, C.: Incremental feature spaces learning with label scarcity. ACM Trans. Knowl. Discovery Data (TKDD) 16(6), 1–26 (2022)CrossRef
7.
Zurück zum Zitat Gu, S., Qian, Y., Hou, C.: Learning with incremental instances and features. IEEE Trans. Neural Networks Learn. Syst. (2023) Gu, S., Qian, Y., Hou, C.: Learning with incremental instances and features. IEEE Trans. Neural Networks Learn. Syst. (2023)
8.
Zurück zum Zitat He, Y., Dong, J., Hou, B.J., Wang, Y., Wang, F.: Online learning in variable feature spaces with mixed data. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 181–190. IEEE (2021) He, Y., Dong, J., Hou, B.J., Wang, Y., Wang, F.: Online learning in variable feature spaces with mixed data. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 181–190. IEEE (2021)
9.
Zurück zum Zitat He, Y., Wu, B., Wu, D., Beyazit, E., Chen, S., Wu, X.: Toward mining capricious data streams: a generative approach. IEEE Trans. Neural Networks Learn. Syst. 32(3), 1228–1240 (2020)MathSciNetCrossRef He, Y., Wu, B., Wu, D., Beyazit, E., Chen, S., Wu, X.: Toward mining capricious data streams: a generative approach. IEEE Trans. Neural Networks Learn. Syst. 32(3), 1228–1240 (2020)MathSciNetCrossRef
10.
Zurück zum Zitat He, Y., Yuan, X., Chen, S., Wu, X.: Online learning in variable feature spaces under incomplete supervision. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4106–4114 (2021) He, Y., Yuan, X., Chen, S., Wu, X.: Online learning in variable feature spaces under incomplete supervision. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4106–4114 (2021)
11.
Zurück zum Zitat Hou, B.J., Zhang, L., Zhou, Z.H.: Learning with feature evolvable streams. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Hou, B.J., Zhang, L., Zhou, Z.H.: Learning with feature evolvable streams. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
12.
Zurück zum Zitat Hou, B.J., Zhang, L., Zhou, Z.H.: Prediction with unpredictable feature evolution. IEEE Trans. Neural Networks Learn. Syst. 33(10), 5706–5715 (2021)MathSciNetCrossRef Hou, B.J., Zhang, L., Zhou, Z.H.: Prediction with unpredictable feature evolution. IEEE Trans. Neural Networks Learn. Syst. 33(10), 5706–5715 (2021)MathSciNetCrossRef
13.
Zurück zum Zitat Huynh, N.A., Ng, W.K., Ariyapala, K.: Learning under concept drift with follow the regularized leader and adaptive decaying proximal. Expert Syst. Appl. 96, 49–63 (2018)CrossRef Huynh, N.A., Ng, W.K., Ariyapala, K.: Learning under concept drift with follow the regularized leader and adaptive decaying proximal. Expert Syst. Appl. 96, 49–63 (2018)CrossRef
14.
Zurück zum Zitat Lachin, J.M.: Worst-rank score analysis with informatively missing observations in clinical trials. Control. Clin. Trials 20(5), 408–422 (1999)CrossRef Lachin, J.M.: Worst-rank score analysis with informatively missing observations in clinical trials. Control. Clin. Trials 20(5), 408–422 (1999)CrossRef
15.
Zurück zum Zitat Lian, H., Atwood, J.S., Hou, B.J., Wu, J., He, Y.: Online deep learning from doubly-streaming data. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 3185–3194 (2022) Lian, H., Atwood, J.S., Hou, B.J., Wu, J., He, Y.: Online deep learning from doubly-streaming data. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 3185–3194 (2022)
16.
Zurück zum Zitat Liu, N., Beerman, I., Lifton, R., Zhao, H.: Haplotype analysis in the presence of informatively missing genotype data. Genet. Epidemiol.: The Official Publication of the International Genetic Epidemiology Society 30(4), 290–300 (2006)CrossRef Liu, N., Beerman, I., Lifton, R., Zhao, H.: Haplotype analysis in the presence of informatively missing genotype data. Genet. Epidemiol.: The Official Publication of the International Genetic Epidemiology Society 30(4), 290–300 (2006)CrossRef
17.
Zurück zum Zitat Liu, Y., Fan, X., Li, W., Gao, Y.: Online passive-aggressive active learning for trapezoidal data streams. IEEE Trans. Neural Networks Learn. Syst. 34, 6725–6739 (2022)MathSciNetCrossRef Liu, Y., Fan, X., Li, W., Gao, Y.: Online passive-aggressive active learning for trapezoidal data streams. IEEE Trans. Neural Networks Learn. Syst. 34, 6725–6739 (2022)MathSciNetCrossRef
18.
Zurück zum Zitat McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, pp. 1222–1230 (2013) McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, pp. 1222–1230 (2013)
19.
Zurück zum Zitat Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012) Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
21.
Zurück zum Zitat Oza, N.C., Russell, S.J.: Online bagging and boosting. In: International Workshop on Artificial Intelligence and Statistics, pp. 229–236. PMLR (2001) Oza, N.C., Russell, S.J.: Online bagging and boosting. In: International Workshop on Artificial Intelligence and Statistics, pp. 229–236. PMLR (2001)
22.
Zurück zum Zitat Schreckenberger, C., Glockner, T., Stuckenschmidt, H., Bartelt, C.: Restructuring of hoeffding trees for trapezoidal data streams. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 416–423. IEEE (2020) Schreckenberger, C., Glockner, T., Stuckenschmidt, H., Bartelt, C.: Restructuring of hoeffding trees for trapezoidal data streams. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 416–423. IEEE (2020)
23.
Zurück zum Zitat Schreckenberger, C., He, Y., Lüdtke, S., Bartelt, C., Stuckenschmidt, H.: Online random feature forests for learning in varying feature spaces. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 4587–4595 (2023) Schreckenberger, C., He, Y., Lüdtke, S., Bartelt, C., Stuckenschmidt, H.: Online random feature forests for learning in varying feature spaces. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 4587–4595 (2023)
24.
Zurück zum Zitat Shih, W.J.: Problems in dealing with missing data and informative censoring in clinical trials. Curr. Control. Trials Cardiovasc. Med. 3(1), 1–7 (2002)CrossRef Shih, W.J.: Problems in dealing with missing data and informative censoring in clinical trials. Curr. Control. Trials Cardiovasc. Med. 3(1), 1–7 (2002)CrossRef
25.
Zurück zum Zitat Singer, Y., Duchi, J.C.: Efficient learning using forward-backward splitting. In: Advances in Neural Information Processing Systems, vol. 22 (2009) Singer, Y., Duchi, J.C.: Efficient learning using forward-backward splitting. In: Advances in Neural Information Processing Systems, vol. 22 (2009)
26.
Zurück zum Zitat Tian, Y., Zhang, Y.: A comprehensive survey on regularization strategies in machine learning. Inf. Fusion 80, 146–166 (2022)CrossRef Tian, Y., Zhang, Y.: A comprehensive survey on regularization strategies in machine learning. Inf. Fusion 80, 146–166 (2022)CrossRef
27.
Zurück zum Zitat Xiao, L.: Dual averaging method for regularized stochastic learning and online optimization. In: Advances in Neural Information Processing Systems, vol. 22 (2009) Xiao, L.: Dual averaging method for regularized stochastic learning and online optimization. In: Advances in Neural Information Processing Systems, vol. 22 (2009)
28.
Zurück zum Zitat Yao, Z.J., Bi, J., Chen, Y.X.: Applying deep learning to individual and community health monitoring data: a survey. Int. J. Autom. Comput. 15, 643–655 (2018)CrossRef Yao, Z.J., Bi, J., Chen, Y.X.: Applying deep learning to individual and community health monitoring data: a survey. Int. J. Autom. Comput. 15, 643–655 (2018)CrossRef
29.
Zurück zum Zitat You, D., et al.: Online learning from incomplete and imbalanced data streams. IEEE Trans. Knowl. Data Eng. 35, 10650–10665 (2023)CrossRef You, D., et al.: Online learning from incomplete and imbalanced data streams. IEEE Trans. Knowl. Data Eng. 35, 10650–10665 (2023)CrossRef
30.
Zurück zum Zitat Zhang, Q., Zhang, P., Long, G., Ding, W., Zhang, C., Wu, X.: Online learning from trapezoidal data streams. IEEE Trans. Knowl. Data Eng. 28(10), 2709–2723 (2016)CrossRef Zhang, Q., Zhang, P., Long, G., Ding, W., Zhang, C., Wu, X.: Online learning from trapezoidal data streams. IEEE Trans. Knowl. Data Eng. 28(10), 2709–2723 (2016)CrossRef
Metadaten
Titel
Online Learning in Varying Feature Spaces with Informative Variation
verfasst von
Peijia Qin
Liyan Song
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_2