Skip to main content
Erschienen in: Journal of Combinatorial Optimization 4/2020

03.09.2020

Online maximum matching with recourse

verfasst von: Spyros Angelopoulos, Christoph Dürr, Shendan Jin

Erschienen in: Journal of Combinatorial Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the online maximum matching problem in a model in which the edges are associated with a known recourse parameter k. An online algorithm for this problem has to maintain a valid matching while edges of the underlying graph are presented one after the other. At any moment the algorithm can decide to include an edge into the matching or to exclude it, under the restriction that at most k such actions per edge take place, where k is typically a small constant. This problem was introduced and studied in the context of general online packing problems with recourse by Avitabile et al. (Inf Process Lett 113(3):81–86, 2013), whereas the special case \(k=2\) was studied by Boyar et al. (Proceedings of the 15th workshop on algorithms and data structures (WADS), pp 217–228, 2017). In the first part of this paper we consider the edge arrival model, in which an arriving edge never disappears from the graph. Here, we first show an improved analysis on the performance of the algorithm AMP of Avitabile et al., by exploiting the structure of the matching problem. In addition, we show that the greedy algorithm has competitive ratio 3/2 for every even k and ratio 2 for every odd k. Moreover, we present and analyze an improvement of the greedy algorithm which we call L-Greedy, and we show that for small values of k it outperforms the algorithm AMP. In terms of lower bounds, we show that no deterministic algorithm better than \(1+1/(k-1)\) exists, improving upon the known lower bound of \(1+1/k\). The second part of the paper is devoted to the edge arrival/departure model, which is the fully dynamic variant of online matching with recourse. The analysis of L-Greedy and AMP carry through in this model; moreover we show a lower bound of \((k^2-3k+6) / (k^2-4k+7)\) for all even \(k \ge 4\). For \(k\in \{2,3\}\), the competitive ratio is 3/2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For consistency with other recourse models, we define the initial default state of an edge as rejected, and therefore rejecting a newly arriving edge does not count as decision modification. See also Sect. 1.3.1.
 
2
We emphasize that in our work we consider the maximum cardinality matching problem; some previous work (with or without recourse) has considered the generalized weighted matching problem, in which each edge has a weight and the objective is to maximize the weight of edges in the matching.
 
3
We can assume, without loss of generality, that this is the only viable choice for the online algorithm. This is because the only way an algorithm can transform a given matching \(M_1\) to a matching \(M_2\) is via a sequence which can only consist of the following: (i) augmenting paths; (ii) alternating cycles; and (iii) alternating, or even “decreasing” paths (i.e., paths such that if the algorithm applies them, then the cardinality of the matching remains the same, or decreases, respectively). This is a well-known result from matching theory. In principle an online algorithm, say A, could apply paths and cycles in cases (ii) and (iii), but such an algorithm can be converted to another algorithm \(A'\) which is at least as good as A in terms of matching size, and which maintains edges of smaller types than A.
 
Literatur
Zurück zum Zitat Avitabile T, Mathieu C, Parkinson LH (2013) Online constrained optimization with recourse. Inf Process Lett 113(3):81–86MathSciNetCrossRef Avitabile T, Mathieu C, Parkinson LH (2013) Online constrained optimization with recourse. Inf Process Lett 113(3):81–86MathSciNetCrossRef
Zurück zum Zitat Bernstein A, Holm J, Rotenberg E (2018) Online bipartite matching with amortized replacements. In: Proceedings of the 29th annual ACM-SIAM symposium on discrete algorithms, (SODA), pp 947–959 Bernstein A, Holm J, Rotenberg E (2018) Online bipartite matching with amortized replacements. In: Proceedings of the 29th annual ACM-SIAM symposium on discrete algorithms, (SODA), pp 947–959
Zurück zum Zitat Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press, CambridgeMATH Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Boyar J, Favrholdt LM, Kotrbčík M, Larsen KS (2017) Relaxing the irrevocability requirement for online graph algorithms. In: Proceedings of the 15th workshop on algorithms and data structures, (WADS), pp 217–228 Boyar J, Favrholdt LM, Kotrbčík M, Larsen KS (2017) Relaxing the irrevocability requirement for online graph algorithms. In: Proceedings of the 15th workshop on algorithms and data structures, (WADS), pp 217–228
Zurück zum Zitat Buchbinder N, Segev D, Tkach Y (2017) Online algorithms for maximum cardinality matching with edge arrivals. In: Proceedings of the 25th annual European symposium on algorithms (ESA), pp 22:1–22:14 Buchbinder N, Segev D, Tkach Y (2017) Online algorithms for maximum cardinality matching with edge arrivals. In: Proceedings of the 25th annual European symposium on algorithms (ESA), pp 22:1–22:14
Zurück zum Zitat Chiplunkar A, Tirodkar S, Vishwanathan S (2015) On randomized algorithms for matching in the online preemptive model. In: Proceedings of the 23rd annual european symposium on algorithms (ESA), pp 325–336 Chiplunkar A, Tirodkar S, Vishwanathan S (2015) On randomized algorithms for matching in the online preemptive model. In: Proceedings of the 23rd annual european symposium on algorithms (ESA), pp 325–336
Zurück zum Zitat Epstein L, Levin A, Segev D, Weimann O (2013) Improved bounds for online preemptive matching. In: Proceedings of the 30th international symposium on theoretical aspects of computer science (STACS), pp 389–399 Epstein L, Levin A, Segev D, Weimann O (2013) Improved bounds for online preemptive matching. In: Proceedings of the 30th international symposium on theoretical aspects of computer science (STACS), pp 389–399
Zurück zum Zitat Gu A, Gupta A, Kumar A (2016) The power of deferral: maintaining a constant-competitive steiner tree online. SIAM J Comput 45(1):1–28MathSciNetCrossRef Gu A, Gupta A, Kumar A (2016) The power of deferral: maintaining a constant-competitive steiner tree online. SIAM J Comput 45(1):1–28MathSciNetCrossRef
Zurück zum Zitat Gupta A, Kumar A (2014) Online Steiner tree with deletions. In: Proceedings of the 25th annual ACM-SIAM symposium on discrete algorithms, (SODA), Portland, Oregon, USA, pp 455–467 Gupta A, Kumar A (2014) Online Steiner tree with deletions. In: Proceedings of the 25th annual ACM-SIAM symposium on discrete algorithms, (SODA), Portland, Oregon, USA, pp 455–467
Zurück zum Zitat Gupta A, Kumar A, Stein C (2014) Maintaining assignments online: matching, scheduling, and flows. In: Proceedings of the 25th snnual ACM-SIAM symposium on discrete algorithms (SODA), pp 468–479 Gupta A, Kumar A, Stein C (2014) Maintaining assignments online: matching, scheduling, and flows. In: Proceedings of the 25th snnual ACM-SIAM symposium on discrete algorithms (SODA), pp 468–479
Zurück zum Zitat Han X, Makino K (2009) Online minimization knapsack problem. In: Proceedings of the 7th international workshop on approximation and online algorithms (WAOA), pp 182–193 Han X, Makino K (2009) Online minimization knapsack problem. In: Proceedings of the 7th international workshop on approximation and online algorithms (WAOA), pp 182–193
Zurück zum Zitat Iwama K, Taketomi S (2002) Removable online knapsack problems. In: Proceedings of the 29th international colloquium on automata, languages and programming (ICALP), pp 293–305 Iwama K, Taketomi S (2002) Removable online knapsack problems. In: Proceedings of the 29th international colloquium on automata, languages and programming (ICALP), pp 293–305
Zurück zum Zitat Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. In: Proceedings of the 22nd annual ACM symposium on theory of computing (STOC), pp 352–358. ACM Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. In: Proceedings of the 22nd annual ACM symposium on theory of computing (STOC), pp 352–358. ACM
Zurück zum Zitat Love E (1980) Some logarithmic inequalities. Math Gaz 64(427):55–57CrossRef Love E (1980) Some logarithmic inequalities. Math Gaz 64(427):55–57CrossRef
Zurück zum Zitat McGregor A (2005) Finding graph matchings in data streams. In: Approximation, randomization and combinatorial optimization, algorithms and techniques (APPROX-RANDOM), pp 170–181 McGregor A (2005) Finding graph matchings in data streams. In: Approximation, randomization and combinatorial optimization, algorithms and techniques (APPROX-RANDOM), pp 170–181
Zurück zum Zitat Megow N, Skutella M, Verschae J, Wiese A (2016) The power of recourse for online MST and TSP. SIAM J Comput 45(3):859–880MathSciNetCrossRef Megow N, Skutella M, Verschae J, Wiese A (2016) The power of recourse for online MST and TSP. SIAM J Comput 45(3):859–880MathSciNetCrossRef
Zurück zum Zitat Siegel C (1988) Topics in complex function theory: elliptic functions and uniformization theory, vol 1. Wiley, New YorkMATH Siegel C (1988) Topics in complex function theory: elliptic functions and uniformization theory, vol 1. Wiley, New YorkMATH
Zurück zum Zitat Varadaraja AB (2011) Buyback problem-approximate matroid intersection with cancellation costs. In: Proceedings of the 38th international colloquium on automata, languages, and programming (ICALP), pp 379–390 Varadaraja AB (2011) Buyback problem-approximate matroid intersection with cancellation costs. In: Proceedings of the 38th international colloquium on automata, languages, and programming (ICALP), pp 379–390
Metadaten
Titel
Online maximum matching with recourse
verfasst von
Spyros Angelopoulos
Christoph Dürr
Shendan Jin
Publikationsdatum
03.09.2020
Verlag
Springer US
Erschienen in
Journal of Combinatorial Optimization / Ausgabe 4/2020
Print ISSN: 1382-6905
Elektronische ISSN: 1573-2886
DOI
https://doi.org/10.1007/s10878-020-00641-w

Weitere Artikel der Ausgabe 4/2020

Journal of Combinatorial Optimization 4/2020 Zur Ausgabe