Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.05.2019 | Focus | Ausgabe 11/2020

Soft Computing 11/2020

Online sequential pattern mining and association discovery by advanced artificial intelligence and machine learning techniques

Zeitschrift:
Soft Computing > Ausgabe 11/2020
Autoren:
Shian-Chang Huang, Chei-Chang Chiou, Jui-Te Chiang, Cheng-Feng Wu
Wichtige Hinweise
Communicated by Mu-Yen Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the advances in information science, vast amounts of financial time series data can been collected and analyzed. In modern time series analysis, sequential pattern mining (SPM) and association discovery (AD) are the most important techniques to predict the future trends. This study aims at developing advanced SPM and AD for financial data by cutting edge techniques from artificial intelligence and machine learning. The nonlinearity and non-stationarity of financial time series dynamics pose a major challenge for SPM and AD. This study employs time–frequency analysis to extract features for SPM. Then, a sparse multi-manifold clustering (SMMC) is used to partition the feature space into several disjointed regions for better AD. Finally, local relevance vector machines (RVMs) are employed for AD and perform the forecasting. Different from traditional methods, the novel forecasting system operates on multiple resolutions and multiple dynamic regimes. SMMC finds both the neighbors and the weights automatically by a sparse solution, which approximately spans a low-dimensional affine subspace at that point. RVM, the Bayesian kernel machines, can produce parsimonious models with excellent generalization properties. Taking multiple time series data from financial markets as an example, the empirical results demonstrate that the proposed model outperforms traditional models and significantly reduces the forecasting errors. The framework is effective and suitable for other time series forecasting.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2020

Soft Computing 11/2020 Zur Ausgabe

Premium Partner

    Bildnachweise