Skip to main content

2018 | OriginalPaper | Buchkapitel

Online Test Microstructures of the Thermophysical Properties of MEMS Conducting Films

verfasst von : Hai-Yun Liu, Zai-Fa Zhou, Qing-An Huang

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermophysical properties of MEMS materials, such as thermal conductivity, thermal diffusivity, and coefficient of thermal expansion (CTE), are one of the most important properties in MEMS technology. Steady-state thermal response and transient-state thermal response of MEMS devices depend on the thermal conductivity and the thermal diffusivity of device materials. Thermally driven microstructures, on the other hand, exploit the thermal expansion effect for their operation. It is necessary to characterize the thermophysical properties of MEMS materials for the design of MEMS devices.
This chapter will present online test microstructures and measurement methods for the thermophysical properties of MEMS conducting beams. The background of the work is reviewed in section “Introduction.” In section “Online Test Microstructure of Thermal Conductivity,” test microstructures for thermal conductivity based on steady-state thermal analysis are developed. Section “Online Test Microstructure of Thermal Conductivity and Thermal Diffusivity” is dedicated to discussing transient-state thermal analysis and proposing a test microstructure for both thermal conductivity and thermal diffusivity. In sections “Online Test Microstructure of the Coefficient of Thermal Expansion by Rotating Technique” and “Online Test Microstructure of the Coefficient of Thermal Expansion by a Pull-In Approach,” the coefficient of thermal expansion is extracted by micro-rotating structures and double-clamped beams, respectively. The former takes advantage of thermal actuation, while the latter makes use of the electrostatic pull-in approach. All the test microstructures proposed in sections. “Online Test Microstructure of Thermal Conductivity,” “Online Test Microstructure of Thermal Conductivity and Thermal Diffusivity” and “Online Test Microstructure of the Coefficient of Thermal Expansion by Rotating Technique” are stimulated electrically and measured electrically. They can find applications in MEMS fabrication process line to provide direct quality control and obtain the data needed by MEMS designers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arx M-V, Paul O, Baltes H (1995) Determination of the heat capacity of CMOS layers for optimal CMOS sensor design. Sensors Actuators A Phys 47(1–3):428–431CrossRef Arx M-V, Paul O, Baltes H (1995) Determination of the heat capacity of CMOS layers for optimal CMOS sensor design. Sensors Actuators A Phys 47(1–3):428–431CrossRef
Zurück zum Zitat Arx M-Von, Paul O, Baltes H (1997) Thermoelectric test structures to measure the heat capacity of CMOS layer sandwiches. In: Proceedings of TRANSDUERS’97, pp 619–22 Arx M-Von, Paul O, Baltes H (1997) Thermoelectric test structures to measure the heat capacity of CMOS layer sandwiches. In: Proceedings of TRANSDUERS’97, pp 619–22
Zurück zum Zitat Arx M-V, Paul O, Baltes H (1998) Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Trans Semicond Manuf 11(2):217–224CrossRef Arx M-V, Paul O, Baltes H (1998) Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Trans Semicond Manuf 11(2):217–224CrossRef
Zurück zum Zitat Arx M-v, Paul O, Baltes H (2000) Process dependent thin film thermal conductivities for thermal CMOS MEMS. J Microelectromech Syst 9(1):136–145CrossRef Arx M-v, Paul O, Baltes H (2000) Process dependent thin film thermal conductivities for thermal CMOS MEMS. J Microelectromech Syst 9(1):136–145CrossRef
Zurück zum Zitat Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instrum 61(2):802–808CrossRef Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instrum 61(2):802–808CrossRef
Zurück zum Zitat Chae JH, Lee JY, Kang SW (1999) Measurement of thermal expansion coefficient of poly-Si using microgauge sensors. Sensors Actuators A Phys 75(3):222–229CrossRef Chae JH, Lee JY, Kang SW (1999) Measurement of thermal expansion coefficient of poly-Si using microgauge sensors. Sensors Actuators A Phys 75(3):222–229CrossRef
Zurück zum Zitat Cheng C, Tsai M, Fang W (2015) Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers. J Micromech Microeng 25(2):025014.1–025014.14CrossRef Cheng C, Tsai M, Fang W (2015) Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers. J Micromech Microeng 25(2):025014.1–025014.14CrossRef
Zurück zum Zitat deCoster J, Lofrano M, Jansen R, Rottenberg X, Severi S, Borremans J, VanderPlas G, Donnay S, Tilmans HAC (2011) A novel test method for simulations measurement of thermal conductivity, CTE, residual stress and Young's modulus of suspended thin film using a laser Doppler vibrometer. In: Proceedings of TRANSDUCERS'11, pp 1701–1704 deCoster J, Lofrano M, Jansen R, Rottenberg X, Severi S, Borremans J, VanderPlas G, Donnay S, Tilmans HAC (2011) A novel test method for simulations measurement of thermal conductivity, CTE, residual stress and Young's modulus of suspended thin film using a laser Doppler vibrometer. In: Proceedings of TRANSDUCERS'11, pp 1701–1704
Zurück zum Zitat Fang W, Tsai HC, Lo CY (1999) Determining thermal expansion coefficients of thin films using micromachined cantilevers. Sensors Actuators A Phys 77(1):21–27CrossRef Fang W, Tsai HC, Lo CY (1999) Determining thermal expansion coefficients of thin films using micromachined cantilevers. Sensors Actuators A Phys 77(1):21–27CrossRef
Zurück zum Zitat Gabbay LD (1998) Computer aided macromodeling for MEMS. Dissertation, Massachusetts Institute of Technology Gabbay LD (1998) Computer aided macromodeling for MEMS. Dissertation, Massachusetts Institute of Technology
Zurück zum Zitat Geisberger AA, Sarkar N, Skidmore GD (2003) Electrothermal properties and modeling of polysilicon microthermal actuators. J Microelectromech Syst 12(4):513–523CrossRef Geisberger AA, Sarkar N, Skidmore GD (2003) Electrothermal properties and modeling of polysilicon microthermal actuators. J Microelectromech Syst 12(4):513–523CrossRef
Zurück zum Zitat Hafizovic S, Paul O (2002) Temperature-dependent thermal conductivities of CMOS layers by micromachined thermal van der Pauw test structures. Sensors Actuators A Phys 97–98:246–252CrossRef Hafizovic S, Paul O (2002) Temperature-dependent thermal conductivities of CMOS layers by micromachined thermal van der Pauw test structures. Sensors Actuators A Phys 97–98:246–252CrossRef
Zurück zum Zitat Holman JP (1997) Heat transfer. McGraw-Hill, New York Holman JP (1997) Heat transfer. McGraw-Hill, New York
Zurück zum Zitat Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64–70CrossRef Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64–70CrossRef
Zurück zum Zitat Huang Q-A, Xu G, Qi L, Li W (2006) A simple method for measuring the thermal diffusivity of surface micromachined polysilicon thin films. J Micromech Microeng 16(5):981–985CrossRef Huang Q-A, Xu G, Qi L, Li W (2006) A simple method for measuring the thermal diffusivity of surface micromachined polysilicon thin films. J Micromech Microeng 16(5):981–985CrossRef
Zurück zum Zitat Irace A, Sarro PM (1999) Measurement of thermal conductivity and diffusivity of single and multiplayer membranes. Sensors Actuators A Phys 76(1–3):323–328CrossRef Irace A, Sarro PM (1999) Measurement of thermal conductivity and diffusivity of single and multiplayer membranes. Sensors Actuators A Phys 76(1–3):323–328CrossRef
Zurück zum Zitat Jain A, Goodson KE (2008) Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J Heat Transf 130(10):102402.1–102402.7CrossRef Jain A, Goodson KE (2008) Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J Heat Transf 130(10):102402.1–102402.7CrossRef
Zurück zum Zitat Jansen E, Obermeier E (1996) Thermal conductivity measurements on thin films based on micromechanical devices. J Microelectromech Syst 6(1):118–121 Jansen E, Obermeier E (1996) Thermal conductivity measurements on thin films based on micromechanical devices. J Microelectromech Syst 6(1):118–121
Zurück zum Zitat Leon I, Amador R, Kohlhof K (2004) Evaluation of MUMPS polysilicon structures for thermal flow sensors. Microelectron Reliab 44(4):651–655CrossRef Leon I, Amador R, Kohlhof K (2004) Evaluation of MUMPS polysilicon structures for thermal flow sensors. Microelectron Reliab 44(4):651–655CrossRef
Zurück zum Zitat Lin L, Chiao M (1996) Electrothermal responses of lineshape microstructures. Sensors Actuators A Phys 55(1):35–41CrossRef Lin L, Chiao M (1996) Electrothermal responses of lineshape microstructures. Sensors Actuators A Phys 55(1):35–41CrossRef
Zurück zum Zitat Liu C (2006) Foundations of MEMS. Prentice-Hall, Upper Saddle River Liu C (2006) Foundations of MEMS. Prentice-Hall, Upper Saddle River
Zurück zum Zitat Liu Z, Huang Q-A, Li W (2004) Analysis of optimized micro-rotating-structure for MEMS. In: Proceedings of the 7th international conference on solid-state and integrated circuits Technology, pp 1747–1750 Liu Z, Huang Q-A, Li W (2004) Analysis of optimized micro-rotating-structure for MEMS. In: Proceedings of the 7th international conference on solid-state and integrated circuits Technology, pp 1747–1750
Zurück zum Zitat Liu Z, Huang Q-A, Li W (2006) A new micro-rotating structure. J Phys Conf Ser 34(34):552–557CrossRef Liu Z, Huang Q-A, Li W (2006) A new micro-rotating structure. J Phys Conf Ser 34(34):552–557CrossRef
Zurück zum Zitat Liu H, Li W, Yuan F, Jiang M, Huang QA (2012a) Micro-rotating structures for determining thermal expansion coefficients of polysilicon thin films. In: Proceedings of 2012 I.E. Sensors, pp 1596–1599 Liu H, Li W, Yuan F, Jiang M, Huang QA (2012a) Micro-rotating structures for determining thermal expansion coefficients of polysilicon thin films. In: Proceedings of 2012 I.E. Sensors, pp 1596–1599
Zurück zum Zitat Liu H, Zhou Z, Li W, Huang Q-A (2012b) An online test structure for the thermal expansion coefficient of surface micromachined polysilicon beams by a pull-in approach. J Micromech Microeng 22(5): 055017.1–055017.8CrossRef Liu H, Zhou Z, Li W, Huang Q-A (2012b) An online test structure for the thermal expansion coefficient of surface micromachined polysilicon beams by a pull-in approach. J Micromech Microeng 22(5): 055017.1–055017.8CrossRef
Zurück zum Zitat Liu H, Li W, Zhou Z, Huang Q-A (2013) In situ test structures for the thermal expansion coefficient and residual stress of polysilicon thin films. J Micromech Microeng 23(7):075019.1–075019.9 Liu H, Li W, Zhou Z, Huang Q-A (2013) In situ test structures for the thermal expansion coefficient and residual stress of polysilicon thin films. J Micromech Microeng 23(7):075019.1–075019.9
Zurück zum Zitat Liu H, Li W, Zhou Z, Huang Q-A (2014) In-situ determination of the coefficient of thermal expansion of polysilicon thin films using micro-rotating structures. Thin Solid Films 552(3):184–191CrossRef Liu H, Li W, Zhou Z, Huang Q-A (2014) In-situ determination of the coefficient of thermal expansion of polysilicon thin films using micro-rotating structures. Thin Solid Films 552(3):184–191CrossRef
Zurück zum Zitat Mag-isa AE, Kim S-M, Kim J-H, Lee H-J, Oh C-S (2013) Out-of-plane CTE measurement method for freestanding thin films. Exp Mech 53(6):1017–1024CrossRef Mag-isa AE, Kim S-M, Kim J-H, Lee H-J, Oh C-S (2013) Out-of-plane CTE measurement method for freestanding thin films. Exp Mech 53(6):1017–1024CrossRef
Zurück zum Zitat Mastrangelo CH, Muller RS (1988) Thermal diffusivity of heavily doped low pressure chemical vapor deposited polycrystalline silicon films. Sensors Mater 3:133–142 Mastrangelo CH, Muller RS (1988) Thermal diffusivity of heavily doped low pressure chemical vapor deposited polycrystalline silicon films. Sensors Mater 3:133–142
Zurück zum Zitat McConnell AD, Uma S, Goodson KE (2001) Thermal conductivity of doped polysilicon layers. J Microelectromech Syst 10(3): 360–369CrossRef McConnell AD, Uma S, Goodson KE (2001) Thermal conductivity of doped polysilicon layers. J Microelectromech Syst 10(3): 360–369CrossRef
Zurück zum Zitat Morikawa J, Hashmoto T (1998) Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis. Japan. J Appl Phys 37:1484–1487CrossRef Morikawa J, Hashmoto T (1998) Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis. Japan. J Appl Phys 37:1484–1487CrossRef
Zurück zum Zitat Murarka SP, Retajczyk TF (1983) Effect of phosphorus doping on stress in silicon and polycrystalline silicon. J Appl Phys 54(4): 2069–2072CrossRef Murarka SP, Retajczyk TF (1983) Effect of phosphorus doping on stress in silicon and polycrystalline silicon. J Appl Phys 54(4): 2069–2072CrossRef
Zurück zum Zitat Nie M, Huang Q-A, Li W, Rong H (2005) An in-situ technique for measuring Young’s modulus and residual stress of each layer for multi-layer film. In: Proceedings of TRANSDUCERS '05, pp 836–839 Nie M, Huang Q-A, Li W, Rong H (2005) An in-situ technique for measuring Young’s modulus and residual stress of each layer for multi-layer film. In: Proceedings of TRANSDUCERS '05, pp 836–839
Zurück zum Zitat Nie M, Huang Q-A, Li W (2009) Pull-in characterization of doubly-clamped composite beams. Sensors Actuators A Phys 151(2):118–126CrossRef Nie M, Huang Q-A, Li W (2009) Pull-in characterization of doubly-clamped composite beams. Sensors Actuators A Phys 151(2):118–126CrossRef
Zurück zum Zitat Ogando K, laForgia N, Zárate JJ, Pastoriza H (2012) Design and characterization of a fully compliant out-of-plane thermal actuator. Sensors Actuators A Phys 183:95–100CrossRef Ogando K, laForgia N, Zárate JJ, Pastoriza H (2012) Design and characterization of a fully compliant out-of-plane thermal actuator. Sensors Actuators A Phys 183:95–100CrossRef
Zurück zum Zitat Osterberg PM, Senturia SD (1997) M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRef Osterberg PM, Senturia SD (1997) M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRef
Zurück zum Zitat Pan CH (2002) A simple method for determining linear thermal expansion coefficients of thin films. J Micromech Microeng 12:548–555CrossRef Pan CH (2002) A simple method for determining linear thermal expansion coefficients of thin films. J Micromech Microeng 12:548–555CrossRef
Zurück zum Zitat Paul O, Ruther P, Plattner L, Baltes H (2000) A thermal van der Pauw test structure. IEEE Trans Semicond Manufact 13(2):159–166CrossRef Paul O, Ruther P, Plattner L, Baltes H (2000) A thermal van der Pauw test structure. IEEE Trans Semicond Manufact 13(2):159–166CrossRef
Zurück zum Zitat Pocratsky RM, deBoer MP (2014) Determination of thin film coefficient of thermal expansion and residual strain from freestanding fixed–fixed beams. J Vac Sci Technol B 32(6):062001.1–062001.6CrossRef Pocratsky RM, deBoer MP (2014) Determination of thin film coefficient of thermal expansion and residual strain from freestanding fixed–fixed beams. J Vac Sci Technol B 32(6):062001.1–062001.6CrossRef
Zurück zum Zitat Retajczyk TF, Sinha AK (1980) Elastic stiffness and thermal expansion coefficient of BN films. Appl Phys Lett 36(2):161–163CrossRef Retajczyk TF, Sinha AK (1980) Elastic stiffness and thermal expansion coefficient of BN films. Appl Phys Lett 36(2):161–163CrossRef
Zurück zum Zitat Roncaglia A, Cozzani E, Mancarella F, Passini M, Cardinali GC, Severi M (2007) Influence of air heat exchange upon on-chip measurement of thermal conductivity using MEMS test structures. In: Proceedings of TRANSDUCERS’07, pp 615–618 Roncaglia A, Cozzani E, Mancarella F, Passini M, Cardinali GC, Severi M (2007) Influence of air heat exchange upon on-chip measurement of thermal conductivity using MEMS test structures. In: Proceedings of TRANSDUCERS’07, pp 615–618
Zurück zum Zitat Rong H, Huang Q-A, Nie M, Li W (2004) An analytical model for pull-in voltage of clamped-clamped mutilayer beams. Sensors Actuators A Phys 116(1):15–21CrossRef Rong H, Huang Q-A, Nie M, Li W (2004) An analytical model for pull-in voltage of clamped-clamped mutilayer beams. Sensors Actuators A Phys 116(1):15–21CrossRef
Zurück zum Zitat Schafer H, Graeger V, Kobs R (1989) Temperature independent pressure sensors using polycrystalline silicon strain gauges. Sensors Actuators 17(3–4):521–527CrossRef Schafer H, Graeger V, Kobs R (1989) Temperature independent pressure sensors using polycrystalline silicon strain gauges. Sensors Actuators 17(3–4):521–527CrossRef
Zurück zum Zitat Senturia SD (2001) Microsystem design. Kluwer, New York Senturia SD (2001) Microsystem design. Kluwer, New York
Zurück zum Zitat Stojanovic N, Yun J, Washington EBK, Berg JM, Holtz MW, Temkin H (2007) Thin-film thermal conductivity measurement using microelectrothermal test structures and finite-element-model-based data analysis. J Microelectromech Syst 16(5):1269–1275CrossRef Stojanovic N, Yun J, Washington EBK, Berg JM, Holtz MW, Temkin H (2007) Thin-film thermal conductivity measurement using microelectrothermal test structures and finite-element-model-based data analysis. J Microelectromech Syst 16(5):1269–1275CrossRef
Zurück zum Zitat Tada H, Kumpel AE, Lathrop RE, Slanina JB, Nieva P, Zavracky P, Miaoulis IN, Wong PY (2000) Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Appl Phys 87(9):4189–4193CrossRef Tada H, Kumpel AE, Lathrop RE, Slanina JB, Nieva P, Zavracky P, Miaoulis IN, Wong PY (2000) Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Appl Phys 87(9):4189–4193CrossRef
Zurück zum Zitat Tai YC, Mastrengelo CH, Muller RS (1988) Thermal conductivity of heavily doped low-pressure chemical vapor deposited polycrystalline silicon films. J Appl Phys 63(5):1442–1447CrossRef Tai YC, Mastrengelo CH, Muller RS (1988) Thermal conductivity of heavily doped low-pressure chemical vapor deposited polycrystalline silicon films. J Appl Phys 63(5):1442–1447CrossRef
Zurück zum Zitat Volkein F, Baltes H (1992) A microstructure for measurement of thermal conductivity of polysilicon thin films. J Microelectromech Syst 1(4):193–196CrossRef Volkein F, Baltes H (1992) A microstructure for measurement of thermal conductivity of polysilicon thin films. J Microelectromech Syst 1(4):193–196CrossRef
Zurück zum Zitat Wang ZD, Zhao XX, Jiang SQ, Lu JJ (2005) Determining thermal expansion coefficient of stressed thin films at low temperature. Polym Test 24: 839–843CrossRef Wang ZD, Zhao XX, Jiang SQ, Lu JJ (2005) Determining thermal expansion coefficient of stressed thin films at low temperature. Polym Test 24: 839–843CrossRef
Zurück zum Zitat Wang Z, Fiorini P, van Hoof C (2009) CMOS-compatible surface-micromachined test structure for determination of thermal conductivity of thin film materials based on Seebeck effect. In: Proceedings of MEMS 2009, pp 623–626 Wang Z, Fiorini P, van Hoof C (2009) CMOS-compatible surface-micromachined test structure for determination of thermal conductivity of thin film materials based on Seebeck effect. In: Proceedings of MEMS 2009, pp 623–626
Zurück zum Zitat Xu G, Huang Q-A (2006) An online test microstructure for thermal conductivity of surface-micromachined polysilicon thin films. IEEE Sensors J 6(2):428–433CrossRef Xu G, Huang Q-A (2006) An online test microstructure for thermal conductivity of surface-micromachined polysilicon thin films. IEEE Sensors J 6(2):428–433CrossRef
Zurück zum Zitat Xu G, Huang Q-A, Jiang Y (2002) A new test structure for measuring thermal conductivity of polysilicon thin films. In: Proceedings of SPIE (SPIE, shanghai 2002) vol 4928, pp 267-271 Xu G, Huang Q-A, Jiang Y (2002) A new test structure for measuring thermal conductivity of polysilicon thin films. In: Proceedings of SPIE (SPIE, shanghai 2002) vol 4928, pp 267-271
Zurück zum Zitat Zhang X, Zhang T, Zohar Y (1998) Measurements of residual stresses in thin films using micro-rotating structures. Thin Solid Films 335(1–2):97–105CrossRef Zhang X, Zhang T, Zohar Y (1998) Measurements of residual stresses in thin films using micro-rotating structures. Thin Solid Films 335(1–2):97–105CrossRef
Zurück zum Zitat Ziang X, Grigoropoulos CP (1995) Thermal conductivity and diffusivity of free standing silicon nitride thin films. Rev Sci Instrum 66(2):1115–1120CrossRef Ziang X, Grigoropoulos CP (1995) Thermal conductivity and diffusivity of free standing silicon nitride thin films. Rev Sci Instrum 66(2):1115–1120CrossRef
Zurück zum Zitat Zou Q, Li Z, Liu L (1995) New methods for measuring mechanical properties of thin films in micromaching: beam pull-in voltage (VPI) method and long beam deflection (LBD) method. Sensors Actuators A Phys 48(2):137–143CrossRef Zou Q, Li Z, Liu L (1995) New methods for measuring mechanical properties of thin films in micromaching: beam pull-in voltage (VPI) method and long beam deflection (LBD) method. Sensors Actuators A Phys 48(2):137–143CrossRef
Metadaten
Titel
Online Test Microstructures of the Thermophysical Properties of MEMS Conducting Films
verfasst von
Hai-Yun Liu
Zai-Fa Zhou
Qing-An Huang
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_6

Neuer Inhalt