Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.02.2015 | Original Article | Ausgabe 2/2017

International Journal of Machine Learning and Cybernetics 2/2017

Online UAV path planning in uncertain and hostile environments

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 2/2017
Autoren:
Naifeng Wen, Xiaohong Su, Peijun Ma, Lingling Zhao, Yanhang Zhang

Abstract

Taking uncertainties of threats and vehicles’ motions and observations into account, the challenge we have to face is how to plan a safe path online in uncertain and dynamic environments. We construct the static threat (ST) model based on an intuitionistic fuzzy set (A-IFS) to deal with the uncertainty of a environmental threat. The problem of avoiding a dynamic threat (DT) is formulated as a pursuit-evasion game. A reachability set (RS) estimator of an uncertain DT is constructed by combining the motion prediction with a RRT-based method. An online path planning framework is proposed by integrating a sub goal selector, a sub tasks allocator and a local path planner. The selector and allocator are presented to accelerate the path searching process. Dynamic domain rapidly-exploring random tree (DDRRT) is combined with the linear quadratic Gaussian motion planning (LQG-MP) method when searching local paths under threats and uncertainties. The path that has been searched is further improved by using a safety adjustment method and the RRT* method in the planning system. The results of Mont Carlo simulations indicate that the proposed algorithm behaves well in planning safe paths online in uncertain and hostile environments.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2017

International Journal of Machine Learning and Cybernetics 2/2017 Zur Ausgabe