Skip to main content

05.11.2024 | Electrical and Electronics, Vision and Sensors, Other Fields of Automotive Engineering

Online Vehicle Velocity Prediction Based on an Adaptive GRNN with Various Input Signals

verfasst von: Dongwei Yao, Junhao Shen, Jue Hou, Ziyan Zhang, Feng Wu

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the prediction accuracy and computational speed of vehicle velocity prediction (VVP) strategies for energy management, an online VVP strategy based on general regression neural network (GRNN) is proposed and optimized. First, a GRNN was employed to achieve online VVP, with an evaluation of the effects of order and σ on prediction accuracy. Then, the impact of various input signals on the VVP prediction effect was compared, and the minimal ARMSE was found under the input signal combination of vehicle velocity, driving motor torque, and brake pedal opening degree. Subsequently, a GRNN structure determination method (SDM) based on the Akaike information criterion (AIC) was proposed to construct an online VVP model based on adaptive-structure GRNN. Simulation results using real vehicle test data indicate that the online VVP strategy based on GRNN is feasible under various urban driving conditions. Additional case studies have demonstrated that, compared with the GRNN relying solely on historical velocity data, the optimized GRNN with adjusted structure and input signals reduced prediction error by at least 26.3%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.MathSciNetCrossRef Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.MathSciNetCrossRef
Zurück zum Zitat Guo, J., He, H., & Sun, C. (2019). ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management. IEEE Transactions on Vehicular Technology, 68(6), 5309–5320.CrossRef Guo, J., He, H., & Sun, C. (2019). ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management. IEEE Transactions on Vehicular Technology, 68(6), 5309–5320.CrossRef
Zurück zum Zitat Jiang, B., & Fei, Y. (2017). Vehicle speed prediction by two-level data driven models in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1793–1801.CrossRef Jiang, B., & Fei, Y. (2017). Vehicle speed prediction by two-level data driven models in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1793–1801.CrossRef
Zurück zum Zitat Karbaschian, M. A., & Söffker, D. (2014). Review and comparison of power management approaches for hybrid vehicles with focus on hydraulic drives. Energies, 7(6), 3512–3536.CrossRef Karbaschian, M. A., & Söffker, D. (2014). Review and comparison of power management approaches for hybrid vehicles with focus on hydraulic drives. Energies, 7(6), 3512–3536.CrossRef
Zurück zum Zitat Liu, K., Asher, Z., Gong, X., Huang, M. and Kolmanovsky, I. (2019). Vehicle velocity prediction and energy management strategy part 1: deterministic and stochastic vehicle velocity prediction using machine learning Liu, K., Asher, Z., Gong, X., Huang, M. and Kolmanovsky, I. (2019). Vehicle velocity prediction and energy management strategy part 1: deterministic and stochastic vehicle velocity prediction using machine learning
Zurück zum Zitat Liu, J. C., & Chen, Y. Z. (2017). A BPNN-based speed prediction method with GA-PSO optimization algorithm. Journal of Transportation Systems Engineering and Information Technology, 17(06), 44–51. Liu, J. C., & Chen, Y. Z. (2017). A BPNN-based speed prediction method with GA-PSO optimization algorithm. Journal of Transportation Systems Engineering and Information Technology, 17(06), 44–51.
Zurück zum Zitat Liu, J. C., & Chen, Y. Z. (2019). Energy management strategy for PHEV based on predictive control. Automotive Engineering, 41(3), 275–282. Liu, J. C., & Chen, Y. Z. (2019). Energy management strategy for PHEV based on predictive control. Automotive Engineering, 41(3), 275–282.
Zurück zum Zitat Martínez, F., Frías, M. P., Pérez-Godoy, M. D., & Rivera, A. J. (2022). Time series forecasting by generalized regression neural networks trained with multiple series. IEEE Access, 10, 3275–3283.CrossRef Martínez, F., Frías, M. P., Pérez-Godoy, M. D., & Rivera, A. J. (2022). Time series forecasting by generalized regression neural networks trained with multiple series. IEEE Access, 10, 3275–3283.CrossRef
Zurück zum Zitat Mozaffari, L., Mozaffari, A., & Azad, N. L. (2015). Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads. Engineering Science and Technology-an International Journal-Jestech, 18(2), 150–162.CrossRef Mozaffari, L., Mozaffari, A., & Azad, N. L. (2015). Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads. Engineering Science and Technology-an International Journal-Jestech, 18(2), 150–162.CrossRef
Zurück zum Zitat Qu, L. C., Li, W., Li, W. J., Ma, D. F., & Wang, Y. H. (2019). Daily long-term traffic flow forecasting based on a deep neural network. Expert Systems with Applications, 121, 304–312.CrossRef Qu, L. C., Li, W., Li, W. J., Ma, D. F., & Wang, Y. H. (2019). Daily long-term traffic flow forecasting based on a deep neural network. Expert Systems with Applications, 121, 304–312.CrossRef
Zurück zum Zitat Rezaei, A., & Burl, J. B. (2015). Prediction of vehicle velocity for model predictive control. IFAC-PapersOnLine, 48(15), 257–262.CrossRef Rezaei, A., & Burl, J. B. (2015). Prediction of vehicle velocity for model predictive control. IFAC-PapersOnLine, 48(15), 257–262.CrossRef
Zurück zum Zitat Shi, F., Wang, Y., Chen, J., Wang, J., Hao, Y. and He, Y. (2019). Short-term Vehicle Speed Prediction by Time Series Neural Network in High Altitude Areas. IOP Conf. Ser.: Earth Environ. Sci, 2019. IOP Publishing, 032072. Shi, F., Wang, Y., Chen, J., Wang, J., Hao, Y. and He, Y. (2019). Short-term Vehicle Speed Prediction by Time Series Neural Network in High Altitude Areas. IOP Conf. Ser.: Earth Environ. Sci, 2019. IOP Publishing, 032072.
Zurück zum Zitat Shin, J., & Sunwoo, M. (2019). Vehicle speed prediction using a markov chain with speed constraints. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3201–3211.CrossRef Shin, J., & Sunwoo, M. (2019). Vehicle speed prediction using a markov chain with speed constraints. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3201–3211.CrossRef
Zurück zum Zitat Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568–576.CrossRef Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568–576.CrossRef
Zurück zum Zitat Sun, C., Hu, X. S., Moura, S. J., & Sun, F. C. (2015). Velocity predictors for predictive energy management in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 23(3), 1197–1204.CrossRef Sun, C., Hu, X. S., Moura, S. J., & Sun, F. C. (2015). Velocity predictors for predictive energy management in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 23(3), 1197–1204.CrossRef
Zurück zum Zitat Tang, J. , Guo, L. , Gao, B. , Liu, Q. , & Chen, H. . (2016). Energy management of a parallel hybrid electric vehicle with CVT using model predictive control. 2016 35th Chinese Control Conference (CCC). IEEE. Tang, J. , Guo, L. , Gao, B. , Liu, Q. , & Chen, H. . (2016). Energy management of a parallel hybrid electric vehicle with CVT using model predictive control. 2016 35th Chinese Control Conference (CCC). IEEE.
Zurück zum Zitat Wang, F., & Luo, Y. T. (2019). A research on power splitting strategy for hybrid energy storage system based on driving condition prediction. Automotive Engineering, 41(11), 1251–1258. Wang, F., & Luo, Y. T. (2019). A research on power splitting strategy for hybrid energy storage system based on driving condition prediction. Automotive Engineering, 41(11), 1251–1258.
Zurück zum Zitat Wu, Y., Wang, H., Zhang, B., & Du, K. L. (2012). Using radial basis function networks for function approximation and classification. ISRN Applied Mathematics, 2012, 1–34.MathSciNetCrossRef Wu, Y., Wang, H., Zhang, B., & Du, K. L. (2012). Using radial basis function networks for function approximation and classification. ISRN Applied Mathematics, 2012, 1–34.MathSciNetCrossRef
Zurück zum Zitat Xi, L. H., Zhang, X., Sun, C. Y., Wang, Z. X., Hou, X. S., & Zhang, J. B. (2017). Intelligent energy management control for extended range electric vehicles based on dynamic programming and neural network. Energies, 10, 11.CrossRef Xi, L. H., Zhang, X., Sun, C. Y., Wang, Z. X., Hou, X. S., & Zhang, J. B. (2017). Intelligent energy management control for extended range electric vehicles based on dynamic programming and neural network. Energies, 10, 11.CrossRef
Zurück zum Zitat Xiang, C., Ding, F., Wang, W., & He, W. (2017). Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control. Applied Energy, 189, 640–653.CrossRef Xiang, C., Ding, F., Wang, W., & He, W. (2017). Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control. Applied Energy, 189, 640–653.CrossRef
Zurück zum Zitat Xu, F., Tsunogawa, H., Kako, J., Hu, X., Li, S. E., Shen, T., et al. (2022). Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution. Control Theory and Technology, 20, 1–16.MathSciNetCrossRef Xu, F., Tsunogawa, H., Kako, J., Hu, X., Li, S. E., Shen, T., et al. (2022). Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution. Control Theory and Technology, 20, 1–16.MathSciNetCrossRef
Zurück zum Zitat Yang, M. Y., Lou, T., & Li, Y. F. (2018). Research on future vehicle speed prediction model on roads. Journal of Chinese Computer Systems, 39, 12. Yang, M. Y., Lou, T., & Li, Y. F. (2018). Research on future vehicle speed prediction model on roads. Journal of Chinese Computer Systems, 39, 12.
Zurück zum Zitat Yeon, K., Min, K., Shin, J., Sunwoo, M., & Han, M. (2019). Ego-vehicle speed prediction using a long short-term memory based recurrent neural network. International Journal of Automotive Technology, 20(4), 713–722.CrossRef Yeon, K., Min, K., Shin, J., Sunwoo, M., & Han, M. (2019). Ego-vehicle speed prediction using a long short-term memory based recurrent neural network. International Journal of Automotive Technology, 20(4), 713–722.CrossRef
Zurück zum Zitat Zhang, Y. , Chen, Z. , Li, G. , Liu, Y. , & Early, J. . (2021). Integrated velocity prediction method and application in vehicle-environment cooperative control based on internet of vehicles.IEEE Transactions on Vehicular Technology,(99), 1–1. Zhang, Y. , Chen, Z. , Li, G. , Liu, Y. , & Early, J. . (2021). Integrated velocity prediction method and application in vehicle-environment cooperative control based on internet of vehicles.IEEE Transactions on Vehicular Technology,(99), 1–1.
Zurück zum Zitat Zhou, W., Yang, L., Ying, T., Yuan, J., & Yang, Y. (2019). Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road. IEEE Transactions on Intelligent Transportation Systems, 20(11), 4119–4133.CrossRef Zhou, W., Yang, L., Ying, T., Yuan, J., & Yang, Y. (2019). Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road. IEEE Transactions on Intelligent Transportation Systems, 20(11), 4119–4133.CrossRef
Metadaten
Titel
Online Vehicle Velocity Prediction Based on an Adaptive GRNN with Various Input Signals
verfasst von
Dongwei Yao
Junhao Shen
Jue Hou
Ziyan Zhang
Feng Wu
Publikationsdatum
05.11.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00172-x