Skip to main content
Erschienen in: Fluid Dynamics 2/2021

01.03.2021

Onset of Rayleigh–Taylor Convection in a Porous Medium

verfasst von: E. B. Soboleva

Erschienen in: Fluid Dynamics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

The Rayleigh–Taylor instability and the initial stage of density-driven convection in a porous medium is simulated numerically in reference to geologic problems. A two-layer fluid system in which the lower layer is formed by pure water and the upper layer by an aqueous solution of salts is considered. The upper layer is more dense and viscous. The determination of the characteristic time of the onset of convection in the numerical solution is discussed. The parameters which depend on and do not depend of the initial density fluctuations are revealed. The effect of the viscosity contrast on the onset and development of convection flow and mass transfer is analyzed. The quantitative discrepancies related to neglecting the viscosity contrast in geologic fluids are estimated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Polubarinova-Kochina, P.Ya., Teoriya dvizheniya gruntovykh vod (Theory of Ground–Water Movement), Moscow: Nauka, 1977. Polubarinova-Kochina, P.Ya., Teoriya dvizheniya gruntovykh vod (Theory of Ground–Water Movement), Moscow: Nauka, 1977.
2.
Zurück zum Zitat Bear, J. and Cheng, A., Modeling Groundwater Flow and Contaminant Transport, New York: Springer, 2010.CrossRef Bear, J. and Cheng, A., Modeling Groundwater Flow and Contaminant Transport, New York: Springer, 2010.CrossRef
4.
Zurück zum Zitat Shargatov, V.A., Tsypkin, G.G., and Bogdanova, Yu.A., Fragmentation of flow through a porous medium with a capillary pressure gradient, Dokl. Ros. Akad. Nauk, 2018, vol. 480, no. 1, pp. 40–44. Shargatov, V.A., Tsypkin, G.G., and Bogdanova, Yu.A., Fragmentation of flow through a porous medium with a capillary pressure gradient, Dokl. Ros. Akad. Nauk, 2018, vol. 480, no. 1, pp. 40–44.
5.
Zurück zum Zitat Afanasyev, A.A. and Chernova, A.A., On solution of the Riemann problem describing injection of a heated salt solution into an aquifer, Fluid Dynamics, 2019, vol. 54, no. 4, pp. 510–519. https://doi.org/10.1134/S0015462819040013CrossRef Afanasyev, A.A. and Chernova, A.A., On solution of the Riemann problem describing injection of a heated salt solution into an aquifer, Fluid Dynamics, 2019, vol. 54, no. 4, pp. 510–519. https://doi.org/10.1134/S0015462819040013CrossRef
7.
Zurück zum Zitat Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2006.MATH Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2006.MATH
8.
Zurück zum Zitat Drazin, P.G., Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.CrossRef Drazin, P.G., Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.CrossRef
9.
Zurück zum Zitat Bestehorn, M. and Firoozabadi, A., Effect of fluctuations on the onset of density-driven convection in porous media, Phys. Fluids, 2012, vol. 24, p. 114102.ADSCrossRef Bestehorn, M. and Firoozabadi, A., Effect of fluctuations on the onset of density-driven convection in porous media, Phys. Fluids, 2012, vol. 24, p. 114102.ADSCrossRef
10.
Zurück zum Zitat Homsy, G.M., Viscous fingering in porous media, Ann. Rev. Fluid Mech., 1987, vol. 19, pp. 271–311.ADSCrossRef Homsy, G.M., Viscous fingering in porous media, Ann. Rev. Fluid Mech., 1987, vol. 19, pp. 271–311.ADSCrossRef
11.
Zurück zum Zitat Manickam, O. and Homsy, G.M., Fingering instabilities in vertical miscible displacement flows in porous media, J. Fluid Mech., 1995, vol. 288, pp. 75–102.ADSMathSciNetCrossRef Manickam, O. and Homsy, G.M., Fingering instabilities in vertical miscible displacement flows in porous media, J. Fluid Mech., 1995, vol. 288, pp. 75–102.ADSMathSciNetCrossRef
12.
Zurück zum Zitat Ghesmat, K. and Azaiez, J., Viscous fingering instability in porous media: Effect of anisotropic velocity-dependent dispersion tensor, Transport in Porous Media, 2008, vol. 73, pp. 297–318.MathSciNetCrossRef Ghesmat, K. and Azaiez, J., Viscous fingering instability in porous media: Effect of anisotropic velocity-dependent dispersion tensor, Transport in Porous Media, 2008, vol. 73, pp. 297–318.MathSciNetCrossRef
13.
Zurück zum Zitat Moortgat, J., Viscous and gravitational fingering in multiphase compositional and compressible flow, Adv. Water Resources, 2016, vol. 89, pp. 53–66.ADSCrossRef Moortgat, J., Viscous and gravitational fingering in multiphase compositional and compressible flow, Adv. Water Resources, 2016, vol. 89, pp. 53–66.ADSCrossRef
14.
Zurück zum Zitat Teng, Y., Wang, P., Jiang, L., Liu, Yu, Song, Y., and Wei, Y., An experimental study of density-driven convection of fluid pairs with viscosity contrast in porous media, Int. J. Heat and Mass Transfer, 2020, vol. 152, p. 119514.CrossRef Teng, Y., Wang, P., Jiang, L., Liu, Yu, Song, Y., and Wei, Y., An experimental study of density-driven convection of fluid pairs with viscosity contrast in porous media, Int. J. Heat and Mass Transfer, 2020, vol. 152, p. 119514.CrossRef
15.
Zurück zum Zitat Aleksandrov, A.A., Dzhuraeva, E.V., and Utenkov, V.F., Viscosity of saline, Teplofiz. Vysok. Temp., 2012, vol. 50, no. 3, pp. 378–383. Aleksandrov, A.A., Dzhuraeva, E.V., and Utenkov, V.F., Viscosity of saline, Teplofiz. Vysok. Temp., 2012, vol. 50, no. 3, pp. 378–383.
16.
Zurück zum Zitat Soboleva, E.B., Density-driven convection in an inhomogeneous geothermal reservoir, Int. J. Heat and Mass Transfer, 2018, vol. 127 (part C), pp. 784–798.CrossRef Soboleva, E.B., Density-driven convection in an inhomogeneous geothermal reservoir, Int. J. Heat and Mass Transfer, 2018, vol. 127 (part C), pp. 784–798.CrossRef
17.
Zurück zum Zitat Soboleva, E.B., Method for numerically investigating the dynamics of saline water in soil, Mat. Modelirovanie, 2014, vol. 26, no. 2, pp. 50–64. Soboleva, E.B., Method for numerically investigating the dynamics of saline water in soil, Mat. Modelirovanie, 2014, vol. 26, no. 2, pp. 50–64.
20.
Zurück zum Zitat Soboleva, E.B., A method for numerical simulation of haline convective flows in porous media applied to geology, Comp. Math. Mathem. Phys., 2019, vol. 59, no. 11, pp. 1893–1903.MathSciNetCrossRef Soboleva, E.B., A method for numerical simulation of haline convective flows in porous media applied to geology, Comp. Math. Mathem. Phys., 2019, vol. 59, no. 11, pp. 1893–1903.MathSciNetCrossRef
21.
Zurück zum Zitat Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Corp.; McGraw-Hill, 1980. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Corp.; McGraw-Hill, 1980.
22.
Zurück zum Zitat Leonard, B.P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering, 1979, vol. 19, no. 1, pp. 59–98.ADSCrossRef Leonard, B.P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering, 1979, vol. 19, no. 1, pp. 59–98.ADSCrossRef
23.
Zurück zum Zitat Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6, Fluid Mechanics, (2nd ed.), Butterworth-Heinemann, 1987. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6, Fluid Mechanics, (2nd ed.), Butterworth-Heinemann, 1987.
24.
Zurück zum Zitat Kim Kim, M.Ch., Onset of buoyancy-driven convection in a variable viscosity liquid saturated in a porous medium, Chemical Engineering Science, 2014, vol. 113, pp. 77–87.CrossRef Kim Kim, M.Ch., Onset of buoyancy-driven convection in a variable viscosity liquid saturated in a porous medium, Chemical Engineering Science, 2014, vol. 113, pp. 77–87.CrossRef
Metadaten
Titel
Onset of Rayleigh–Taylor Convection in a Porous Medium
verfasst von
E. B. Soboleva
Publikationsdatum
01.03.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 2/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821020105

Weitere Artikel der Ausgabe 2/2021

Fluid Dynamics 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.