Skip to main content

2024 | Buch

Open GIS

insite
SUCHEN

Über dieses Buch

Dieses Buch bietet eine umfassende Einführung in die neuesten Entwicklungen im Bereich Open GIS, einschließlich Open GIS-Daten, Dienstleistungen, Software und Bibliotheken für die GIS-Programmierung. Obwohl GIS-Software mit dem aufkommenden Trend zur Open-Source-Software in das Zeitalter des Open GIS eingetreten ist, gibt es kein geeignetes Buch für GIS-Ausbilder, um unsere nächste Generation zu unterrichten und für Fachleute, um ein tiefgreifendes Verständnis über Open GIS-Technologien und Toolkits zu erlangen. Dieses Buch beabsichtigt, diese fehlende Anleitung für Studenten, Pädagogen und Fachleute in geospatialen Bereichen bereitzustellen, um schnell eine breite Palette an Open-Source-Daten, Werkzeugen und Programmierungen für geospatiale Anwendungen zu finden, zu lernen und zu nutzen. Das Buch beginnt mit einer Einführung in offene Daten und diskutiert Lösungen für das Datenmanagement, darunter sowohl Open-Source-relationale Datenbanken als auch NoSQL-Datenbanksysteme für Big Data. Als nächstes behandelt das Buch verschiedene GIS und Fernerkundungssoftware, Werkzeuge und Programmierbibliotheken, um räumliche Statistiken und Analysen durchzuführen. Die Leser erfahren mehr über die Werkzeuge und Bibliotheken für die Desktop- und Web-GIS-Entwicklung sowohl für zweidimensionale (2D) als auch dreidimensionale (3D) Kartierung und Visualisierung. Schließlich bietet das Buch zwei Beispiele für Open-GIS-Anwendungen, darunter öffentliche Gesundheit und Naturgefahren. Am Ende jedes Kapitels sind praktische Übungen enthalten, mit denen die Leser die beliebtesten Open GIS-Technologien, die in diesem Kapitel vorgestellt werden, vollständig beherrschen können.

Inhaltsverzeichnis

Frontmatter

Open GIS Fundamentals

Frontmatter
Chapter 1. Open GIS in the New Big Data Era
Abstract
The GIS community has witnessed a boost of the development of Free and Open Source Software over the last two decades. However, OpenGIS also has the issue of lacking compatibility, usability peer-review mechanism, documentation, and education of intellectual property protection. In addition, OpenGIS is constrained by the national security and user privacy issue. This chapter introduces the history, development, and components of OpenGIS, followed by its challenges faced by the GIS community.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 2. Open Data
Abstract
Data is a fundamental element of GIS, but spatial data can often be expensive, limited, or confidential due to its nature. With the advance of the open-source movement, an increasing number of spatial datasets are available to access without charge and restrictions. This chapter provides an overview of how we access open-source spatial datasets with various data sources.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu

Open Databases

Frontmatter
Chapter 3. Open-Source Data Formats and Open Services
Abstract
This chapter introduces a variety of open-source spatial data formats, spatial data services, and spatial data servers. The lab section provides a tutorial for handling open-source spatial data in a web server and publishing the data to the Internet through open spatial data services.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 4. Database Fundamentals
Abstract
This chapter delves into various fundamental concepts related to databases. In addition, this chapter will go through the database architecture, and design process, which includes conceptual design, logical design, and finally physical design. Next, Structured Query Language (SQL) will be introduced to create a database, retrieve and modify data, establish database users, and manage user accessibility and security permissions.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 5. Relational Databases
Abstract
Currently, relational databases dominate the database landscape worldwide. Consequently, numerous open-source relational database management systems have been developed and widely adopted for data storage and management. Notable examples include PostgreSQL, MySQL, Maria DB, and SQLite. Moreover, these systems come with spatial data extensions that enable the storage and management of spatial data. For example, PostgreSQL incorporates PostGIS, a robust spatial extension that empowers users to work with geographic objects, conduct spatial queries, and perform spatial operations. IBM DB2 utilizes the Spatial Extender to effectively manage spatial data, while MS SQL provides Spatial Storage, a dedicated module designed for spatial data management. SQLite, on the other hand, relies on SpatiaLite as its spatial extender. The purpose of this chapter is to provide an overview of major open-source database management systems, their respective spatial extensions, and the functions they offer for handling spatial data.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 6. NoSQL Databases
Abstract
In the previous two chapters, we have primarily discussed the relational databases that store in tables. This chapter will explore another popular type of database system, called NoSQL. In particular, the background, fundamental features, and data models of four commonly used NoSQL database systems, including key-value, document, column, and graph, will be described. Next, one specific example of a NoSQL database, MongoDB, will be introduced.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu

Open Spatial Data Processing and Analysis

Frontmatter
Chapter 7. Open Vector Analysis
Abstract
Vector data represent spatial objects and phenomena by modelling the geometry and the attribute. Vector data enable us to describe spatial distribution and analyze spatial patterns in the world. This chapter introduces the concept of the vector data model, and the vector processing and analysis functions. Several typical open-source GIS softwares are presented, including GRASS, QGIS, GeoDa, Whitebox GAT, gVSIG, and MapWindow. Exercises are provided to solve real-world problems.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 8. Open Raster Data Analysis
Abstract
Raster data represents spatial objects and phenomena with a matrix of pixels. This chapter introduces the concept of raster data model and the functions for processing and analysing raster data. Several typical open-source toolkits and software for raster analysis are presented, including GDAL, Whitebox GAT, Raster Frames, Google Earth Engine, GEE MAP, and Leaf Maps. Exercises are provided with three real-world applications.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 9. Programming Libraries, APIs, and Tools
Abstract
OpenGIS source codes enable researchers and technicians to write scripts or codes for real-world applications. This chapter introduces the programming languages, libraries, APIs, and tools for geospatial analysis and visualization. Exercises are provided with three popular open spatial analysis libraries, including remote sensing image classification using GDAL, hotspot detection with GeoPandas.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu

Open Mapping and Visualization

Frontmatter
Chapter 10. Desktop-Based Mapping and Visualization Tools
Abstract
Desktop-based mapping and visualization tools can secure user data and make full use of client-side computing resources. They also offer unique advantages in data storage and function distribution by leveraging the client/server (C/S) mode. In this chapter, we introduce a group of widely used and reputable desktop-based mapping and visualization tools, covering both 2D and 3D visualization categories. In terms of 2D mapping and visualization, three typical tools are introduced, i.e., QGIS, uDig, and SAGA GIS. Meanwhile, three 3D visualization tools with different functions and focuses: Google Earth, WorldWind, and WorldWide Telescope (WWT) are introduced. In the Desktop Application Lab section, we provide two exercises and two questions. From there, readers can learn how to use these tools to solve their own problems.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 11. Web-Based Mapping and Visualization Packages
Abstract
Web-based mapping and visualization applications can be developed, used, and disseminated more easily than desktop-based ones. This chapter introduces a group of widely used web-based mapping and visualization packages for both 2D and 3D visualization. We detail their features and advantages, helping users select appropiate tools for specific scenarios. Specifically, We introduce four mapping APIs: Google Maps, OpenLayers, Mapbox, and Leaflet for 2D mapping. For visualization, we discuss three visualization packages: D3.js, Plotly.js, and ECharts. The mapping APIs offer fundamental map visualization and map-based information display functions. In contrast, the visualization packages allow for presenting large datasets and dynamic behaviors, enhancing human-computer interaction and animation. For 3D mapping, we first introduce Google Earth 3D, which combines satellite images, aerial photos, and GIS data on a 3D earth, featuring powerful spatial analysis and interactive functions. Then, we present four WebGL-based 3D visualization tools excelling in 3D big data rendering: Cesium, Three.js, Deck.gl, and Kepler.gl. To facilitate mastery, the chapter concludes with two hands-on practices and two problem-solving assignments. Following these practices teaches audiences basic programming skills to tackle visualization problems.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu

Applications

Frontmatter
Chapter 12. Open GIS for Public Health
Abstract
This chapter provides a review of the application of GIS and OpenGIS for public health, including spatial analysis, spatial modeling, and GIS system for public health. Next, this chapter includes a “problem solving” section for applying OpenGIS tools for the COIVD-19 mapping tutorial.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Chapter 13. Open GIS for Disasters
Abstract
When a disaster event occurs, managers, responders, and the general public need timely geospatial data generated from various sources (e.g., physical process modeling and remote sensing) to make effective response decisions and improve management strategies. Meanwhile, to collect appropriate data and make efficient use of available data and information throughout all stages of a disaster, reliable software is required to organize, analyze, and display them logically to determine the size and scope of emergency management programs. This chapter introduces the application of open data and Geographic Information System tools to facilitate disaster management.
Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu
Backmatter
Metadaten
Titel
Open GIS
verfasst von
Jizhe Xia
Qunying Huang
Zhipeng Gui
Wei Tu
Copyright-Jahr
2024
Electronic ISBN
978-3-031-41748-1
Print ISBN
978-3-031-41747-4
DOI
https://doi.org/10.1007/978-3-031-41748-1