Skip to main content

2018 | OriginalPaper | Buchkapitel

Open Platform Orbit Determination Systems Using a Mixture of Orbit Estimator and Orbit Propagator

verfasst von : Hilmi Sanusi, Wayan Suparta

Erschienen in: Space Science and Communication for Sustainability

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes a flexible orbit determination method that uses a mixture of orbit estimator and orbit propagator with the ability to perform corrections if the ephemeris from GPS, ground track or other method is obtainable. The satellite uses various sensors including Global Positioning Systems (GPS) or trusted orbit propagator in order to obtain the orbital information with the minimum delay and error at the lowest cost. Orbit propagator uses an orbital dynamic model where the analytic form needs to be constantly updated in order to maintain its accuracy and the integrator needs heavy computation but both constitute the error propagation in which the accuracy depends on the complexity and selection of orbital elements. Orbit estimator uses set of sensors data to produce an estimate where the accuracy depends on measurement noise characteristic and the model used. To avoid divergence, a sensible process and measurement noise model are selected. The orbit estimate is derived from an Extended Kalman Filter (EKF) while the Variation of Parameters (VOP) is used to propagate from one state to the other. Any obtainable ephemeris will be used as an initial state. The EKF uses the Position and Velocity elements as they possess dynamics that are beneficial to the estimator. The propagator uses the Keplerian elements as it consists of slow varying elements [a, e, i] and fast varying elements [ω, Ω, υ]. The EKF will be more difficult to diverge towards any abrupt disturbance if the slow varying elements from the orbit propagator are blended with the orbital elements produced by the orbit estimator and prevent the estimator from diverging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bate RR, Mueller DD, White JE (1971) Fundamentals of astrodynamics. Dover Publications Inc, New York Bate RR, Mueller DD, White JE (1971) Fundamentals of astrodynamics. Dover Publications Inc, New York
2.
Zurück zum Zitat Chory M, Hoffman, DP, LeMay JL (1986) Satellite autonomous navigation–status and history. In: Proceeding of IEEE position, location and navigation symposium (Las Vegas, NV). Institute of Electric and Electronic Engineer, New York, pp 110–121 Chory M, Hoffman, DP, LeMay JL (1986) Satellite autonomous navigation–status and history. In: Proceeding of IEEE position, location and navigation symposium (Las Vegas, NV). Institute of Electric and Electronic Engineer, New York, pp 110–121
3.
Zurück zum Zitat du Plessis JAF (1999) Low earth orbit satellite propagators. Master’s thesis, University of Stellenbosch du Plessis JAF (1999) Low earth orbit satellite propagators. Master’s thesis, University of Stellenbosch
4.
Zurück zum Zitat Escobal PR (1965) Methods of orbit determinations. John Wiley & Sons Inc, New York Escobal PR (1965) Methods of orbit determinations. John Wiley & Sons Inc, New York
5.
Zurück zum Zitat Fox SM, Pal PK, Psiaki M (1990) Magnetometer-based autonomous satellite navigation (MAGNAV). Am Astronaut Soc AAS Pap 90–051:369–382 Fox SM, Pal PK, Psiaki M (1990) Magnetometer-based autonomous satellite navigation (MAGNAV). Am Astronaut Soc AAS Pap 90–051:369–382
6.
Zurück zum Zitat Hosken R, Wertz JR (1995) Microcosm autonomous navigation system on-orbit operation. Am Astronaut Soc AAS Pap 95–074:491–506 Hosken R, Wertz JR (1995) Microcosm autonomous navigation system on-orbit operation. Am Astronaut Soc AAS Pap 95–074:491–506
7.
Zurück zum Zitat Jordaan JJ (1996) An extended Kalman filter observer for autonomous orbit determination. Master’s thesis, University of Stellenbosch Jordaan JJ (1996) An extended Kalman filter observer for autonomous orbit determination. Master’s thesis, University of Stellenbosch
8.
Zurück zum Zitat Nagarajan N, Bhat MS, Kasturirangan (1991) A novel autonomous orbit determination system using earth sensor (scanner). Acta Astronaut 25(2):77–84CrossRef Nagarajan N, Bhat MS, Kasturirangan (1991) A novel autonomous orbit determination system using earth sensor (scanner). Acta Astronaut 25(2):77–84CrossRef
9.
Zurück zum Zitat Primdahl FG, Merayo JM, Brauer P et al (2003) Design, calibration, and testing of precise magnetometers. In: Proceedings of IEEE sensors 2003 (IEEE Cat. No.03CH37498), vol 1, pp 466–467 Primdahl FG, Merayo JM, Brauer P et al (2003) Design, calibration, and testing of precise magnetometers. In: Proceedings of IEEE sensors 2003 (IEEE Cat. No.03CH37498), vol 1, pp 466–467
10.
Zurück zum Zitat Psiaki M, Martel F (1989) Autonomous magnetic navigation for earth orbiting spacecraft. In: Presented at third annual AIAA/USU conference on small satellites, Logan, Utah, USA Psiaki M, Martel F (1989) Autonomous magnetic navigation for earth orbiting spacecraft. In: Presented at third annual AIAA/USU conference on small satellites, Logan, Utah, USA
11.
Zurück zum Zitat Psiaki M, Martel R, Pal PK (1990) Three-axis attitude determination via Kalman filtering of magnetometer data. J Guid Control Dyn 13(3):506–514CrossRef Psiaki M, Martel R, Pal PK (1990) Three-axis attitude determination via Kalman filtering of magnetometer data. J Guid Control Dyn 13(3):506–514CrossRef
12.
Zurück zum Zitat Psiaki M, Huang L, Fox SM (1993) Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low earth orbiting spacecraft. J Guid Control Dyn 16(1):206–214CrossRef Psiaki M, Huang L, Fox SM (1993) Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low earth orbiting spacecraft. J Guid Control Dyn 16(1):206–214CrossRef
13.
Zurück zum Zitat Psiaki M (1995) Autonomous orbit and magnetic field determination using magnetometer and star sensor data. J Guid Control Dyn 8(3):584–592CrossRef Psiaki M (1995) Autonomous orbit and magnetic field determination using magnetometer and star sensor data. J Guid Control Dyn 8(3):584–592CrossRef
14.
Zurück zum Zitat Sanusi H, du Plessis JJ (2000) Investigations of using epoch time in correction of geomagnetic models in estimating orbit for low earth equatorial orbit satellites. In: Presented at 2nd international conference on advances in strategic technologies, Malaysia Sanusi H, du Plessis JJ (2000) Investigations of using epoch time in correction of geomagnetic models in estimating orbit for low earth equatorial orbit satellites. In: Presented at 2nd international conference on advances in strategic technologies, Malaysia
15.
Zurück zum Zitat Shorshi G, Bar-Itzhack IY (1995) Satellite autonomous navigation based on magnetic field measurements. J Guid Control Dyn 18(4):843–850CrossRef Shorshi G, Bar-Itzhack IY (1995) Satellite autonomous navigation based on magnetic field measurements. J Guid Control Dyn 18(4):843–850CrossRef
16.
Zurück zum Zitat Tai F, Noerdlinger PD (1989) A low-cost autonomous navigation system. Am Astronaut Soc AAS Pap 89–001:3–23 Tai F, Noerdlinger PD (1989) A low-cost autonomous navigation system. Am Astronaut Soc AAS Pap 89–001:3–23
17.
Zurück zum Zitat Vallado DA (1997) Fundamentals of astrodynamics and applications. McGraw-Hill, New YorkMATH Vallado DA (1997) Fundamentals of astrodynamics and applications. McGraw-Hill, New YorkMATH
18.
Zurück zum Zitat Wertz JR, Cloots JL, Collins JT et al (2000) Autonomous orbit control: initial flight results from UoSAT-12. In: Presented at 23rd annual aas guidance and control conference, Colorado Wertz JR, Cloots JL, Collins JT et al (2000) Autonomous orbit control: initial flight results from UoSAT-12. In: Presented at 23rd annual aas guidance and control conference, Colorado
19.
Zurück zum Zitat Wiegand M (1996) Autonomous satellite navigation via Kalman filtering of magnetometer data. Acta Astronaut 38(4–8):395–403CrossRef Wiegand M (1996) Autonomous satellite navigation via Kalman filtering of magnetometer data. Acta Astronaut 38(4–8):395–403CrossRef
Metadaten
Titel
Open Platform Orbit Determination Systems Using a Mixture of Orbit Estimator and Orbit Propagator
verfasst von
Hilmi Sanusi
Wayan Suparta
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6574-3_19

Neuer Inhalt