Skip to main content

2017 | OriginalPaper | Buchkapitel

Opinion Mining on Non-English Short Text

verfasst von : Esra Akbas

Erschienen in: Foundations of Intelligent Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the type and the number of such venues increase, automated analysis of sentiment on textual resources has become an essential data mining task. In this paper, we investigate the problem of mining opinions on the collection of informal short texts. Both positive and negative sentiment strength of texts are detected. We focus on a non-English language that has few resources for text mining. This approach would help enhance the sentiment analysis in languages where a list of opinionated words does not exist. We present a new method to automatically construct a list of words with their sentiment strengths. Then, we propose a new method projects the text into dense and low dimensional feature vectors according to the sentiment strength of the words. We detect the mixture of positive and negative sentiments on a multi-variant scale. Empirical evaluation of the proposed framework on Turkish tweets shows that our approach gets good results for opinion mining.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: COLING 2010, pp. 36–44 (2010) Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: COLING 2010, pp. 36–44 (2010)
3.
Zurück zum Zitat Cetin, M., Amasyali, F.: Active learning for Turkish sentiment analysis. In: INISTA 2013, pp. 1–4 (2013) Cetin, M., Amasyali, F.: Active learning for Turkish sentiment analysis. In: INISTA 2013, pp. 1–4 (2013)
4.
Zurück zum Zitat Dehkharghani, R., Saygin, Y., Yanikoglu, B., Oflazer, K.: SentiTurkNet: a Turkish polarity lexicon for sentiment analysis. Lang. Resour. Eval. 50(3), 667–685 (2016)CrossRef Dehkharghani, R., Saygin, Y., Yanikoglu, B., Oflazer, K.: SentiTurkNet: a Turkish polarity lexicon for sentiment analysis. Lang. Resour. Eval. 50(3), 667–685 (2016)CrossRef
5.
Zurück zum Zitat Fragoudis, D., Meretakis, D., Likothanassis, S.: Best terms: an efficient feature-selection algorithm for text categorization. Knowl. Inf. Syst. 8(1), 16–33 (2005)CrossRef Fragoudis, D., Meretakis, D., Likothanassis, S.: Best terms: an efficient feature-selection algorithm for text categorization. Knowl. Inf. Syst. 8(1), 16–33 (2005)CrossRef
6.
Zurück zum Zitat Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using Twitter hashtags and smileys. In: COLING 2010, pp. 241–249 (2010) Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using Twitter hashtags and smileys. In: COLING 2010, pp. 241–249 (2010)
7.
Zurück zum Zitat Erogul, U.: Sentiment analysis in Turkish. Master’s thesis, Middle East Technical University (2009) Erogul, U.: Sentiment analysis in Turkish. Master’s thesis, Middle East Technical University (2009)
8.
Zurück zum Zitat Kamps, J., Marx, M., Mokken, R.J., Rijke, M.D.: Using wordnet to measure semantic orientation of adjectives. In: National Institute for, pp. 1115–1118 (2004) Kamps, J., Marx, M., Mokken, R.J., Rijke, M.D.: Using wordnet to measure semantic orientation of adjectives. In: National Institute for, pp. 1115–1118 (2004)
9.
Zurück zum Zitat Kaya, M., Fidan, G., Toroslu, I.: Sentiment analysis of Turkish political news. In: WI-IAT 2012, vol. 1, pp. 174–180, December 2012 Kaya, M., Fidan, G., Toroslu, I.: Sentiment analysis of Turkish political news. In: WI-IAT 2012, vol. 1, pp. 174–180, December 2012
10.
Zurück zum Zitat Kennedy, A., Inkpen, D.: Sentiment classiffication of movie and product reviews using contextual valence shifters. Comput. Intell. 22(2), 110–125 (2006)CrossRef Kennedy, A., Inkpen, D.: Sentiment classiffication of movie and product reviews using contextual valence shifters. Comput. Intell. 22(2), 110–125 (2006)CrossRef
11.
Zurück zum Zitat Kim, S., Hovy, E.: Crystal: analyzing predictive opinions on the web. In: EMNLPCoNLL 2007 (2007) Kim, S., Hovy, E.: Crystal: analyzing predictive opinions on the web. In: EMNLPCoNLL 2007 (2007)
12.
Zurück zum Zitat Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing (2010) Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing (2010)
13.
Zurück zum Zitat Liu, B.: Sentiment Analysis and Opinion Mining. Morgan and Claypool, San Rafael (2012) Liu, B.: Sentiment Analysis and Opinion Mining. Morgan and Claypool, San Rafael (2012)
14.
15.
Zurück zum Zitat Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRef Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRef
16.
Zurück zum Zitat Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL, pp. 79–86, July 2002 Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL, pp. 79–86, July 2002
17.
Zurück zum Zitat Parlar, T., Özel, S.A.: A new feature selection method for sentiment analysis of turkish reviews. In: International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–6. IEEE (2016) Parlar, T., Özel, S.A.: A new feature selection method for sentiment analysis of turkish reviews. In: International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–6. IEEE (2016)
18.
Zurück zum Zitat Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010)CrossRef Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010)CrossRef
19.
Zurück zum Zitat Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of ACL, pp. 417–424 (2002) Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of ACL, pp. 417–424 (2002)
20.
Zurück zum Zitat Vural, A.G., Cambazoglu, B.B., Senkul, P., Tokgoz, Z.O.: A framework for sentiment analysis in Turkish: application to polarity detection of movie reviews in Turkish. In: Gelenbe, E., Lent, R. (eds.) Computer and Information Sciences III, pp. 437–445. Springer, London (2013). doi:10.1007/978-1-4471-4594-3_45 CrossRef Vural, A.G., Cambazoglu, B.B., Senkul, P., Tokgoz, Z.O.: A framework for sentiment analysis in Turkish: application to polarity detection of movie reviews in Turkish. In: Gelenbe, E., Lent, R. (eds.) Computer and Information Sciences III, pp. 437–445. Springer, London (2013). doi:10.​1007/​978-1-4471-4594-3_​45 CrossRef
Metadaten
Titel
Opinion Mining on Non-English Short Text
verfasst von
Esra Akbas
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-60438-1_41

Premium Partner