Skip to main content

2021 | OriginalPaper | Buchkapitel

8. Optical Autonomous Navigation Technology

verfasst von : Dayi Wang, Maodeng Li, Xiangyu Huang, Xiaowen Zhang

Erschienen in: Spacecraft Autonomous Navigation Technologies Based on Multi-source Information Fusion

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents optical autonomous navigation technology. The principles of optical autonomous navigation and optical imaging sensors are introduced in 8.1 and Sect. 8.2, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
\( C(m,n) \) is the number of the combinations each of which is composed of n elements taken from m elements.
 
Literatur
1.
Zurück zum Zitat Riedel, J., et al. 2000. Deep space 1 technology validation report: Autonomous optical navigation. Pasadena: Jet Propulsion Laboratory. Riedel, J., et al. 2000. Deep space 1 technology validation report: Autonomous optical navigation. Pasadena: Jet Propulsion Laboratory.
2.
Zurück zum Zitat Miso, T., T. Hashimoto, and K. Ninomiya. 1999. Optical guidance for autonomous landing of spacecraft. IEEE Transactions on Aerospace and Electronic Systems 35 (2): 459–473.CrossRef Miso, T., T. Hashimoto, and K. Ninomiya. 1999. Optical guidance for autonomous landing of spacecraft. IEEE Transactions on Aerospace and Electronic Systems 35 (2): 459–473.CrossRef
3.
Zurück zum Zitat Rayman, M.D. 2002. The successful conclusion of the deep space 1 mission: important results without a flashy title. Rayman, M.D. 2002. The successful conclusion of the deep space 1 mission: important results without a flashy title.
4.
Zurück zum Zitat Graf, J.E., et al. 2005. The Mars reconnaissance orbiter mission. Acta Astronautica 57 (2): 566–578.CrossRef Graf, J.E., et al. 2005. The Mars reconnaissance orbiter mission. Acta Astronautica 57 (2): 566–578.CrossRef
5.
Zurück zum Zitat Bhat, R.S., et al. 2004. WILD2 approach maneuver strategy used for Stardust spacecraft. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration. Bhat, R.S., et al. 2004. WILD2 approach maneuver strategy used for Stardust spacecraft. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration.
6.
Zurück zum Zitat Liu, Z., et al. 2015. High precision landing site mapping and rover localization for Chang’e-3 mission. Science China Physics, Mechanics & Astronomy 58 (1): 1–11. Liu, Z., et al. 2015. High precision landing site mapping and rover localization for Chang’e-3 mission. Science China Physics, Mechanics & Astronomy 58 (1): 1–11.
7.
Zurück zum Zitat Kubitschek, D.G., et al. 2006. Deep impact autonomous navigation: the trials of targeting the unknown. Kubitschek, D.G., et al. 2006. Deep impact autonomous navigation: the trials of targeting the unknown.
8.
Zurück zum Zitat Zhang, X.W., D.Y. Wang, and X.Y. Huang. 2009. Study on the selection of the beacon asteroids in autonomous optical navigation for interplanetary exploration. Journal of Astronautics 30 (3): 947–952. Zhang, X.W., D.Y. Wang, and X.Y. Huang. 2009. Study on the selection of the beacon asteroids in autonomous optical navigation for interplanetary exploration. Journal of Astronautics 30 (3): 947–952.
9.
Zurück zum Zitat Xu, W., et al. 2007. Selection and planning of asteroids for deep space autonomous optical navigation. Acta Aeronautica Et Astronautica Sinica 28 (4): 891–896. Xu, W., et al. 2007. Selection and planning of asteroids for deep space autonomous optical navigation. Acta Aeronautica Et Astronautica Sinica 28 (4): 891–896.
10.
Zurück zum Zitat Polle, B., et al. 2003. Autonomous on-board navigation for interplanetary missions. Advances in the Astronautical Sciences 113: 277–293. Polle, B., et al. 2003. Autonomous on-board navigation for interplanetary missions. Advances in the Astronautical Sciences 113: 277–293.
11.
Zurück zum Zitat Chausson, L. and S. Delavault. 2003. Optical navigation performance during interplanetary cruise. In Proceedings of the 17th International Symposium on Space Flight Dynamics. Chausson, L. and S. Delavault. 2003. Optical navigation performance during interplanetary cruise. In Proceedings of the 17th International Symposium on Space Flight Dynamics.
12.
Zurück zum Zitat Bhaskaran, S., et al. 1998. Orbit determination performance evaluation of the deep space 1 autonomous navigation system. In AAS/AIAA Spaceflight Mechanics Meeting, Monterrey, CA. Bhaskaran, S., et al. 1998. Orbit determination performance evaluation of the deep space 1 autonomous navigation system. In AAS/AIAA Spaceflight Mechanics Meeting, Monterrey, CA.
14.
Zurück zum Zitat Bowell, E., et al. 1989. Application of photometric models to asteroids. In Asteroids II. Bowell, E., et al. 1989. Application of photometric models to asteroids. In Asteroids II.
15.
Zurück zum Zitat Romanishin, W., and S.C. Tegler. 2005. Accurate absolute magnitudes for Kuiper belt objects and Centaurs. Icarus 179 (2): 523–526.CrossRef Romanishin, W., and S.C. Tegler. 2005. Accurate absolute magnitudes for Kuiper belt objects and Centaurs. Icarus 179 (2): 523–526.CrossRef
16.
Zurück zum Zitat Christian, J.A., and E.G. Lightsey. 2009. Review of options for autonomous cislunar navigation. Journal of Spacecraft and Rockets 46 (5): 1023–1036.CrossRef Christian, J.A., and E.G. Lightsey. 2009. Review of options for autonomous cislunar navigation. Journal of Spacecraft and Rockets 46 (5): 1023–1036.CrossRef
17.
Zurück zum Zitat Shuster, M.D., and S.D. Oh. 1981. Three-axis attitude determination from vector observations. Journal of Guidance, Control and Dynamics 4 (1): 70–77.CrossRef Shuster, M.D., and S.D. Oh. 1981. Three-axis attitude determination from vector observations. Journal of Guidance, Control and Dynamics 4 (1): 70–77.CrossRef
18.
Zurück zum Zitat Schlee, F., and N. Toda. 1967. Autonomous orbital navigation by optical tracking of unknown landmarks. Journal of Spacecraft and Rockets 4 (12): 1644–1648.CrossRef Schlee, F., and N. Toda. 1967. Autonomous orbital navigation by optical tracking of unknown landmarks. Journal of Spacecraft and Rockets 4 (12): 1644–1648.CrossRef
19.
Zurück zum Zitat Levine, G.M. 1966. A method of orbital navigation using optical sightings to unknown landmarks. AIAA Journal 4 (11): 1928–1931.CrossRef Levine, G.M. 1966. A method of orbital navigation using optical sightings to unknown landmarks. AIAA Journal 4 (11): 1928–1931.CrossRef
20.
Zurück zum Zitat Li, M., et al. 2013. Constrained estimation for autonomous navigation using unknown landmarks. In Chinese Automation Congress (CAC), IEEE. Li, M., et al. 2013. Constrained estimation for autonomous navigation using unknown landmarks. In Chinese Automation Congress (CAC), IEEE.
21.
Zurück zum Zitat Keenan, R.V. and J.D. Regenhardt. 1962. Star occultation measurements as an aid to navigation in cis-lunar space. Massachusetts Institute of Technology. Keenan, R.V. and J.D. Regenhardt. 1962. Star occultation measurements as an aid to navigation in cis-lunar space. Massachusetts Institute of Technology.
22.
Zurück zum Zitat Psiaki, M.L., and J.C. Hinks. 2007. Autonomous lunar orbit determination using star occultation measurements. In AIAA Guidance, Navigation and Control Conference and Exhhibit. Psiaki, M.L., and J.C. Hinks. 2007. Autonomous lunar orbit determination using star occultation measurements. In AIAA Guidance, Navigation and Control Conference and Exhhibit.
23.
Zurück zum Zitat Landgraf, M., et al. 2006. Optical navigation for lunar exploration missions. In 57th International Astronautical Congress, I AC Paper IAC-06-C1. Landgraf, M., et al. 2006. Optical navigation for lunar exploration missions. In 57th International Astronautical Congress, I AC Paper IAC-06-C1.
24.
Zurück zum Zitat Ning, X., et al. 2013. Autonomous satellite navigation using starlight refraction angle measurements. Advances in Space Research 51 (9): 1761–1772.CrossRef Ning, X., et al. 2013. Autonomous satellite navigation using starlight refraction angle measurements. Advances in Space Research 51 (9): 1761–1772.CrossRef
25.
Zurück zum Zitat Wang, X., J. Xie, and S. Ma. 2010. Starlight atmospheric refraction model for a continuous range of height. Journal of Guidance, Control and Dynamics 33 (2): 634.CrossRef Wang, X., J. Xie, and S. Ma. 2010. Starlight atmospheric refraction model for a continuous range of height. Journal of Guidance, Control and Dynamics 33 (2): 634.CrossRef
26.
Zurück zum Zitat Gounley, R., R. White, and E. Gai. 1984. Autonomous satellite navigation by stellar refraction. Journal of Guidance 7 (2): 129–134.CrossRef Gounley, R., R. White, and E. Gai. 1984. Autonomous satellite navigation by stellar refraction. Journal of Guidance 7 (2): 129–134.CrossRef
27.
Zurück zum Zitat Fang, J., X. Ning, and Y. Tian. 2017. Principle and method of autonomous celestial navigation system. National Defense Industry Press. Fang, J., X. Ning, and Y. Tian. 2017. Principle and method of autonomous celestial navigation system. National Defense Industry Press.
28.
Zurück zum Zitat Ham, F.M., and R.G. Brown. 1983. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems 2: 269–273.CrossRef Ham, F.M., and R.G. Brown. 1983. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems 2: 269–273.CrossRef
29.
Zurück zum Zitat Li, M., W. Jing, and X. Huang. 2012. Dual cone-scanning horizon sensor orbit and attitude corrections for Earth’s oblateness. Journal of Guidance, Control and Dynamics 35 (1): 344–349.CrossRef Li, M., W. Jing, and X. Huang. 2012. Dual cone-scanning horizon sensor orbit and attitude corrections for Earth’s oblateness. Journal of Guidance, Control and Dynamics 35 (1): 344–349.CrossRef
Metadaten
Titel
Optical Autonomous Navigation Technology
verfasst von
Dayi Wang
Maodeng Li
Xiangyu Huang
Xiaowen Zhang
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4879-6_8

    Premium Partner