Skip to main content

2011 | OriginalPaper | Buchkapitel

24. Optical Characterisation of Thin Silicon

verfasst von : Michael Reuter, Sebastian J. Eisele

Erschienen in: Ultra-thin Chip Technology and Applications

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the optical characteristics of thin silicon. It starts with the absorption of irradiation, discusses the efficiency potential for thin solar cells and introduces the quantum efficiency. The chapter further discusses the advantages of vertical versus lateral arrangement of the pn-junction and introduces laser processing of silicon, which allows, e.g. for low temperature contactless emitter formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
24.7% efficiency reported by Zhao et al. (see [10]) recalibrated by Green to new reference AM1.5G spectrum [9] (see [11])
 
Literatur
1.
Zurück zum Zitat Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p‐n junction solar cells. J Appl Phys 32:510–519CrossRef Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p‐n junction solar cells. J Appl Phys 32:510–519CrossRef
2.
Zurück zum Zitat Brendel R, Queisser HJ (1993) On the thickness dependence of open circuit voltages of pn junction solar cells. Sol Energy Mater Sol Cells 29:397–401CrossRef Brendel R, Queisser HJ (1993) On the thickness dependence of open circuit voltages of pn junction solar cells. Sol Energy Mater Sol Cells 29:397–401CrossRef
3.
Zurück zum Zitat Yablonovitch E (1982) Statistical ray optics. J Opt Soc Am 72:899–907CrossRef Yablonovitch E (1982) Statistical ray optics. J Opt Soc Am 72:899–907CrossRef
4.
Zurück zum Zitat ISO (1992) International Organization for Standardization, Geneva, Switzerland, ASTMG173-03 from ISO 9845-1 ISO (1992) International Organization for Standardization, Geneva, Switzerland, ASTMG173-03 from ISO 9845-1
5.
Zurück zum Zitat Beattie AR, Landsberg PT (1959) Auger effect in semiconductors. Proc Royal Soc A 249:16–29CrossRef Beattie AR, Landsberg PT (1959) Auger effect in semiconductors. Proc Royal Soc A 249:16–29CrossRef
6.
Zurück zum Zitat Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842MATHCrossRef Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842MATHCrossRef
7.
Zurück zum Zitat Hall RN (1952) Electron-hole recombination in germanium. Phys Rev 87:387CrossRef Hall RN (1952) Electron-hole recombination in germanium. Phys Rev 87:387CrossRef
8.
Zurück zum Zitat Reuter M, Thin crystalline silicon solar cells, Dissertation, University of Stuttgart (to be published) Reuter M, Thin crystalline silicon solar cells, Dissertation, University of Stuttgart (to be published)
9.
Zurück zum Zitat International Electrotechnical Commission (2008). International Standard IEC 60904-3, Edition 2, 2008. Photovoltaic devices-Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. International Electrotechnical Commission, ISBN 2-8318–9705-X International Electrotechnical Commission (2008). International Standard IEC 60904-3, Edition 2, 2008. Photovoltaic devices-Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. International Electrotechnical Commission, ISBN 2-8318–9705-X
10.
Zurück zum Zitat Zhao J, Wang A, Green MA (1999) 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog Photovolt Res Appl 7:471–474CrossRef Zhao J, Wang A, Green MA (1999) 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog Photovolt Res Appl 7:471–474CrossRef
11.
Zurück zum Zitat Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRef Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRef
12.
Zurück zum Zitat Mulligan WP, Rose DH, Cudzinovic MJ, De Ceuster DM, McIntosh KR, Smith DD, Swanson RM (2004) Manufacture of solar cells with 21% efficiency. In: Hoffmann W, Bal J-L, Ossenbrink H, Palz W, Helm P (eds) Proceedings of the 19th European Photovoltaic Solar Energy Conference, pp 387–390 Mulligan WP, Rose DH, Cudzinovic MJ, De Ceuster DM, McIntosh KR, Smith DD, Swanson RM (2004) Manufacture of solar cells with 21% efficiency. In: Hoffmann W, Bal J-L, Ossenbrink H, Palz W, Helm P (eds) Proceedings of the 19th European Photovoltaic Solar Energy Conference, pp 387–390
13.
Zurück zum Zitat Cuevas A, Russell DA (2000) Co-optimisation of the emitter region and the metal grid of silicon solar cells. Prog Photovolt Res Appl 8:603–616CrossRef Cuevas A, Russell DA (2000) Co-optimisation of the emitter region and the metal grid of silicon solar cells. Prog Photovolt Res Appl 8:603–616CrossRef
14.
Zurück zum Zitat Eisele S (2006) Herstellung und Charakterisierung von Rückkontaktsolarzellen, Diploma thesis, University of Stuttgart, Stuttgart Eisele S (2006) Herstellung und Charakterisierung von Rückkontaktsolarzellen, Diploma thesis, University of Stuttgart, Stuttgart
15.
Zurück zum Zitat Einstein A (1905) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 322:549–560CrossRef Einstein A (1905) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 322:549–560CrossRef
16.
Zurück zum Zitat von Smoluchowski M (1906) Zur kinetischen Theorie der brownschen Molekularbewegung und der Suspensionen. Ann Phys 326:756–780CrossRef von Smoluchowski M (1906) Zur kinetischen Theorie der brownschen Molekularbewegung und der Suspensionen. Ann Phys 326:756–780CrossRef
17.
Zurück zum Zitat Al-Omar A-AS, Ghannam MY (1996) Direct calculation of two‐dimensional collection probability in pn junction solar cells, and study of grain‐boundary recombination in polycrystalline silicon cells. J Appl Phys 79:2103CrossRef Al-Omar A-AS, Ghannam MY (1996) Direct calculation of two‐dimensional collection probability in pn junction solar cells, and study of grain‐boundary recombination in polycrystalline silicon cells. J Appl Phys 79:2103CrossRef
18.
Zurück zum Zitat Rau U, Brendel R (1998) The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells. J Appl Phys 84:6412CrossRef Rau U, Brendel R (1998) The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells. J Appl Phys 84:6412CrossRef
19.
Zurück zum Zitat Fairfield JM, Schwuttke GH (1968) Silicon diodes made by laser irradiation. Solid State Electron 11:1175–1176CrossRef Fairfield JM, Schwuttke GH (1968) Silicon diodes made by laser irradiation. Solid State Electron 11:1175–1176CrossRef
20.
Zurück zum Zitat Fogarassy E, Stuck R, Grob JJ, Siffert P (1981) Silicon solar cells realized by laser induced diffusion of vacuum-deposited dopants. J Appl Phys 52:1076–1082CrossRef Fogarassy E, Stuck R, Grob JJ, Siffert P (1981) Silicon solar cells realized by laser induced diffusion of vacuum-deposited dopants. J Appl Phys 52:1076–1082CrossRef
21.
Zurück zum Zitat Sameshima T, Usuzi S, Sekiya M (1987) Laser-induced melting of predeposited impurity doping technique used to fabricate shallow junctions. J Appl Phys 62:711–713CrossRef Sameshima T, Usuzi S, Sekiya M (1987) Laser-induced melting of predeposited impurity doping technique used to fabricate shallow junctions. J Appl Phys 62:711–713CrossRef
22.
Zurück zum Zitat Deutsch TF, Fan JCC, Turner GW, Chapman RL, Ehrlich DJ, Osgood RM (1981) Efficient Si solar cells by laser photochemical doping. Appl Phys Lett 38:144–146CrossRef Deutsch TF, Fan JCC, Turner GW, Chapman RL, Ehrlich DJ, Osgood RM (1981) Efficient Si solar cells by laser photochemical doping. Appl Phys Lett 38:144–146CrossRef
23.
Zurück zum Zitat Köhler JR, Eisele SJ (2010) Precursor layer ablation influences laser doping of silicon. Prog Photovolt Res Appl 18(5):335–339CrossRef Köhler JR, Eisele SJ (2010) Precursor layer ablation influences laser doping of silicon. Prog Photovolt Res Appl 18(5):335–339CrossRef
24.
Zurück zum Zitat Kodera H (1964) Diffusion coefficients of impurities in silicon melt. Jpn J Appl Phys 2:212–219CrossRef Kodera H (1964) Diffusion coefficients of impurities in silicon melt. Jpn J Appl Phys 2:212–219CrossRef
25.
Zurück zum Zitat Eisele SJ, Röder TC, Köhler JR, Werner JH (2009) 18.9% efficient full area laser doped silicon solar cell. Appl Phys Lett 95:133501CrossRef Eisele SJ, Röder TC, Köhler JR, Werner JH (2009) 18.9% efficient full area laser doped silicon solar cell. Appl Phys Lett 95:133501CrossRef
26.
Zurück zum Zitat Kerr MJ, Cuevas A (2002) General parameterization of Auger recombination in crystalline silicon. Appl Phys Lett 91:2473–2480 Kerr MJ, Cuevas A (2002) General parameterization of Auger recombination in crystalline silicon. Appl Phys Lett 91:2473–2480
27.
Zurück zum Zitat Kerr MJ, Schmidt J, Cuevas A, Bultman JH (2001) Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. J Appl Phys 89:3821–3826CrossRef Kerr MJ, Schmidt J, Cuevas A, Bultman JH (2001) Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. J Appl Phys 89:3821–3826CrossRef
28.
Zurück zum Zitat Röder TC, Eisele SJ, Grabitz P, Wagner C, Kulushich G, Köhler JR, Werner JH (2011) Add-on laser tailored selective emitter solar cells. Prog Photovolt Res Appl 18:505 Röder TC, Eisele SJ, Grabitz P, Wagner C, Kulushich G, Köhler JR, Werner JH (2011) Add-on laser tailored selective emitter solar cells. Prog Photovolt Res Appl 18:505
29.
Zurück zum Zitat Reuter M, Brendle W, Tobail O, Werner JH (2009) 50 μm thin solar cells with 17.0% efficiency. Sol Energy Mater Sol Cells 93:704–706CrossRef Reuter M, Brendle W, Tobail O, Werner JH (2009) 50 μm thin solar cells with 17.0% efficiency. Sol Energy Mater Sol Cells 93:704–706CrossRef
30.
Zurück zum Zitat Brendle W (2007) Niedertemperaturrückseitenprozess für hocheffiziente Siliziumsolarzellen. Shaker Verlag, Aachen Brendle W (2007) Niedertemperaturrückseitenprozess für hocheffiziente Siliziumsolarzellen. Shaker Verlag, Aachen
31.
Zurück zum Zitat Basore PA (1993) Extended spectral analysis of internal quantum efficiency. In: Proc. 23rd IEEE Photovoltaic Specialists Conference, IEEE, Piscataway, NY, pp 147–152 Basore PA (1993) Extended spectral analysis of internal quantum efficiency. In: Proc. 23rd IEEE Photovoltaic Specialists Conference, IEEE, Piscataway, NY, pp 147–152
32.
Zurück zum Zitat Brendle W, Nguyen VX, Grohe A, Schneiderlöchner E, Rau U, Palfinger G, Werner JH (2006) 20.5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts. Prog Photovolt Res Appl 14:653–662CrossRef Brendle W, Nguyen VX, Grohe A, Schneiderlöchner E, Rau U, Palfinger G, Werner JH (2006) 20.5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts. Prog Photovolt Res Appl 14:653–662CrossRef
33.
Zurück zum Zitat Tobail O, Reuter M, Werner JH (2009) Origin of the open circuit voltage limit for transfer solar cells. In: Sinke WC, Ossenbrink HA, Helm P (eds) Proc. 24th European Photovoltaic Solar Energy Conference, WIP, Munich, Germany, pp 2593–2595 Tobail O, Reuter M, Werner JH (2009) Origin of the open circuit voltage limit for transfer solar cells. In: Sinke WC, Ossenbrink HA, Helm P (eds) Proc. 24th European Photovoltaic Solar Energy Conference, WIP, Munich, Germany, pp 2593–2595
Metadaten
Titel
Optical Characterisation of Thin Silicon
verfasst von
Michael Reuter
Sebastian J. Eisele
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7276-7_24

Neuer Inhalt