Skip to main content

2017 | OriginalPaper | Buchkapitel

9. Optical Data Compression in Time Stretch Imaging

verfasst von : Ata Mahjoubfar, Claire Lifan Chen, Bahram Jalali

Erschienen in: Artificial Intelligence in Label-free Microscopy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time stretch imaging offers real-time image acquisition at millions of frames per second and subnanosecond shutter speed, and has enabled detection of rare cancer cells in blood with record throughput and specificity. An unintended consequence of high-throughput image acquisition is the massive amount of digital data generated by the instrument. Here we report the first experimental demonstration of real-time optical image compression applied to time stretch imaging. By exploiting the sparsity of the image, we reduce the number of samples and the amount of data generated by the time stretch camera in our proof-of-concept experiments by about three times. Optical data compression addresses the big data predicament in such systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature, 450(7172), 1054–1057.CrossRef Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature, 450(7172), 1054–1057.CrossRef
8.
Zurück zum Zitat Ng, W., Rockwood, T., & Reamon, A. (2014). Demonstration of channel-stitched photonic time stretch analog-to-digital converter with enob > 8 for a 10 ghz signal bandwidth. In GOMACTech (p. 26.2). Washington, DC: US Department of Defense. Ng, W., Rockwood, T., & Reamon, A. (2014). Demonstration of channel-stitched photonic time stretch analog-to-digital converter with enob > 8 for a 10 ghz signal bandwidth. In GOMACTech (p. 26.2). Washington, DC: US Department of Defense.
9.
Zurück zum Zitat Goda, K., & Jalali, B. (2013). Dispersive fourier transformation for fast continuous single-shot measurements. Nature Photonics, 7(2), 102–112.CrossRef Goda, K., & Jalali, B. (2013). Dispersive fourier transformation for fast continuous single-shot measurements. Nature Photonics, 7(2), 102–112.CrossRef
10.
Zurück zum Zitat Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.CrossRef Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.CrossRef
12.
Zurück zum Zitat Mahjoubfar, A., Goda, K., Ayazi, A., Fard, A., Kim, S. H., & Jalali, B. (2011). High-speed nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 98(10), 101107.CrossRef Mahjoubfar, A., Goda, K., Ayazi, A., Fard, A., Kim, S. H., & Jalali, B. (2011). High-speed nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 98(10), 101107.CrossRef
13.
Zurück zum Zitat Goda, K., Mahjoubfar, A., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier, E., Malik, O., Chen, E., et al. (2012). Hybrid dispersion laser scanner. Scientific Reports, 2, 445.CrossRef Goda, K., Mahjoubfar, A., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier, E., Malik, O., Chen, E., et al. (2012). Hybrid dispersion laser scanner. Scientific Reports, 2, 445.CrossRef
14.
Zurück zum Zitat Yazaki, A., Kim, C., Chan, J., Mahjoubfar, A., Goda, K., Watanabe, M., & Jalali, B. (2014). Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning. Applied Physics Letters, 104(25), 251106.CrossRef Yazaki, A., Kim, C., Chan, J., Mahjoubfar, A., Goda, K., Watanabe, M., & Jalali, B. (2014). Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning. Applied Physics Letters, 104(25), 251106.CrossRef
15.
Zurück zum Zitat Wei, X., Lau, A. K. S., Xu, Y., Zhang, C., Mussot, A., Kudlinski, A., Tsia, K. K., & Wong, K. K. Y. (2014). Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm. Optics Letters, 39(20), 5989–5992.CrossRef Wei, X., Lau, A. K. S., Xu, Y., Zhang, C., Mussot, A., Kudlinski, A., Tsia, K. K., & Wong, K. K. Y. (2014). Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm. Optics Letters, 39(20), 5989–5992.CrossRef
17.
Zurück zum Zitat Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2013). Label-free high-throughput cell screening in flow. Biomedical Optics Express, 4(9), 1618–1625.CrossRef Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2013). Label-free high-throughput cell screening in flow. Biomedical Optics Express, 4(9), 1618–1625.CrossRef
18.
Zurück zum Zitat Chen, H., Weng, Z., Liang, Y., Lei, C., Xing, F., Chen, M., & Xie, S. (2014). High speed single-pixel imaging via time domain compressive sampling. In CLEO: Applications and technology (pp. JTh2A–132). Washington, DC: Optical Society of America. Chen, H., Weng, Z., Liang, Y., Lei, C., Xing, F., Chen, M., & Xie, S. (2014). High speed single-pixel imaging via time domain compressive sampling. In CLEO: Applications and technology (pp. JTh2A–132). Washington, DC: Optical Society of America.
19.
Zurück zum Zitat Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2014). Label-free high-throughput imaging flow cytometry. In SPIE LASE (pp. 89720F–89720F). Washington, DC: International Society for Optics and Photonics. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2014). Label-free high-throughput imaging flow cytometry. In SPIE LASE (pp. 89720F–89720F). Washington, DC: International Society for Optics and Photonics.
20.
Zurück zum Zitat Lau, A. K. S., Wong, T. T. W., Ho, K. K. Y., Tang, M. T. H., Chan, A. C. S., Wei, X., Lam, E. Y., Shum, H. C., Wong, K. K. Y., & Tsia, K. K. (2014). Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm. Journal of Biomedical Optics, 19(7), 076001–076001.CrossRef Lau, A. K. S., Wong, T. T. W., Ho, K. K. Y., Tang, M. T. H., Chan, A. C. S., Wei, X., Lam, E. Y., Shum, H. C., Wong, K. K. Y., & Tsia, K. K. (2014). Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm. Journal of Biomedical Optics, 19(7), 076001–076001.CrossRef
21.
Zurück zum Zitat Diebold, E. D., Buckley, B. W., Gossett, D. R., & Jalali, B. (2013). Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nature Photonics, 7(10), 806–810.CrossRef Diebold, E. D., Buckley, B. W., Gossett, D. R., & Jalali, B. (2013). Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nature Photonics, 7(10), 806–810.CrossRef
22.
Zurück zum Zitat Jalali, B., & Asghari, M. H. (2014). The anamorphic stretch transform: Putting the squeeze on ‘big data’. Optics and Photonics News, 25(2), 24–31.CrossRef Jalali, B., & Asghari, M. H. (2014). The anamorphic stretch transform: Putting the squeeze on ‘big data’. Optics and Photonics News, 25(2), 24–31.CrossRef
24.
Zurück zum Zitat Asghari, M. H., & Jalali, B. (2014). Experimental demonstration of optical real-time data compression. Applied Physics Letters, 104(11), 111101.CrossRef Asghari, M. H., & Jalali, B. (2014). Experimental demonstration of optical real-time data compression. Applied Physics Letters, 104(11), 111101.CrossRef
25.
Zurück zum Zitat Jalali, B., Chan, J., & Asghari, M. H. (2014). Time–bandwidth engineering. Optica, 1(1), 23–31.CrossRef Jalali, B., Chan, J., & Asghari, M. H. (2014). Time–bandwidth engineering. Optica, 1(1), 23–31.CrossRef
26.
Zurück zum Zitat Chan, J., Mahjoubfar, A., Asghari, M., & Jalali, B. (2014). Reconstruction in time-bandwidth compression systems. Applied Physics Letters, 105(22), 221105.CrossRef Chan, J., Mahjoubfar, A., Asghari, M., & Jalali, B. (2014). Reconstruction in time-bandwidth compression systems. Applied Physics Letters, 105(22), 221105.CrossRef
27.
Zurück zum Zitat Bosworth, B. T., & Foster, M. A. (2014). High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing. In CLEO: Applications and technology (pp. ATh4P–3). Washington, DC: Optical Society of America. Bosworth, B. T., & Foster, M. A. (2014). High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing. In CLEO: Applications and technology (pp. ATh4P–3). Washington, DC: Optical Society of America.
28.
Zurück zum Zitat Valley, G. C., Sefler, G. A., & Shaw, T. J. (2012). Compressive sensing of sparse radio frequency signals using optical mixing. Optics Letters, 37(22), 4675–4677.CrossRef Valley, G. C., Sefler, G. A., & Shaw, T. J. (2012). Compressive sensing of sparse radio frequency signals using optical mixing. Optics Letters, 37(22), 4675–4677.CrossRef
29.
Zurück zum Zitat Mahjoubfar, A., Goda, K., Betts, G., & Jalali, B. (2013). Optically amplified detection for biomedical sensing and imaging. Journal of the Optical Society of America A, 30(10), 2124–2132.CrossRef Mahjoubfar, A., Goda, K., Betts, G., & Jalali, B. (2013). Optically amplified detection for biomedical sensing and imaging. Journal of the Optical Society of America A, 30(10), 2124–2132.CrossRef
30.
Zurück zum Zitat Goda, K., Ayazi, A., Gossett, D. R., Sadasivam, J., Lonappan, C. K., Sollier, E., Fard, A. M., Hur, S. C., Adam, J., Murray, C., et al. (2012). High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 109(29), 11630–11635.CrossRef Goda, K., Ayazi, A., Gossett, D. R., Sadasivam, J., Lonappan, C. K., Sollier, E., Fard, A. M., Hur, S. C., Adam, J., Murray, C., et al. (2012). High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 109(29), 11630–11635.CrossRef
46.
Zurück zum Zitat Qian, F., Song, Q., Tien, E.-K. Kalyoncu, S. K., & Boyraz, O. (2009). Real-time optical imaging and tracking of micron-sized particles. Optics Communications, 282(24), 4672–4675.CrossRef Qian, F., Song, Q., Tien, E.-K. Kalyoncu, S. K., & Boyraz, O. (2009). Real-time optical imaging and tracking of micron-sized particles. Optics Communications, 282(24), 4672–4675.CrossRef
68.
Zurück zum Zitat Carlo, D. D. (2009). Inertial microfluidics. Lab on a Chip, 9(21), 3038–3046.CrossRef Carlo, D. D. (2009). Inertial microfluidics. Lab on a Chip, 9(21), 3038–3046.CrossRef
80.
Zurück zum Zitat Gupta, V., Jafferji, I., Garza, M., Melnikova, V., Hasegawa, D. K., Pethig, R., & Davis, D. W. (2012). ApostreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 6(2), 024133.CrossRef Gupta, V., Jafferji, I., Garza, M., Melnikova, V., Hasegawa, D. K., Pethig, R., & Davis, D. W. (2012). ApostreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 6(2), 024133.CrossRef
95.
Zurück zum Zitat Shapiro, H. M. (2005). Practical flow cytometry. New York: Wiley. Shapiro, H. M. (2005). Practical flow cytometry. New York: Wiley.
151.
Zurück zum Zitat Chen, C., Mahjoubfar, A., Huang, A., Niazi, K., Rabizadeh, S., & Jalali, B. (2014). Hyper-dimensional analysis for label-free high-throughput imaging flow cytometry. In CLEO: Applications and technology (pp. AW3L–2). Washington, DC: Optical Society of America. Chen, C., Mahjoubfar, A., Huang, A., Niazi, K., Rabizadeh, S., & Jalali, B. (2014). Hyper-dimensional analysis for label-free high-throughput imaging flow cytometry. In CLEO: Applications and technology (pp. AW3L–2). Washington, DC: Optical Society of America.
152.
Zurück zum Zitat Wong, T. T., Lau, A. K. S., Ho, K. K. Y., Tang, M. Y. H., Robles, J. D. F., Wei, X., Chan, A. C. S., Tang, A. H., Lam, E. Y., Wong, K. K. Y., et al. (2014). Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Scientific Reports, 4, 3656. Wong, T. T., Lau, A. K. S., Ho, K. K. Y., Tang, M. Y. H., Robles, J. D. F., Wei, X., Chan, A. C. S., Tang, A. H., Lam, E. Y., Wong, K. K. Y., et al. (2014). Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Scientific Reports, 4, 3656.
153.
Zurück zum Zitat Nichols, J. M., & Bucholtz, F. (2011). Beating nyquist with light: A compressively sampled photonic link. Optics Express, 19(8), 7339–7348.CrossRef Nichols, J. M., & Bucholtz, F. (2011). Beating nyquist with light: A compressively sampled photonic link. Optics Express, 19(8), 7339–7348.CrossRef
156.
Zurück zum Zitat Chen, Y., Yu, X., Chi, H., Jin, X., Zhang, X., Zheng, S., & Galili, M. (2014). Compressive sensing in a photonic link with optical integration. Optics Letters, 39(8), 2222–2224.CrossRef Chen, Y., Yu, X., Chi, H., Jin, X., Zhang, X., Zheng, S., & Galili, M. (2014). Compressive sensing in a photonic link with optical integration. Optics Letters, 39(8), 2222–2224.CrossRef
157.
Zurück zum Zitat Wikimedia Commons YY (2007). An artwork by István Orosz. Wikimedia Commons YY (2007). An artwork by István Orosz.
158.
Zurück zum Zitat Adam, J., Mahjoubfar, A., Diebold, E. D., Buckley, B. W., & Jalali, B. (2013). Spectrally encoded angular light scattering. Optics Express, 21(23), 28960–28967.CrossRef Adam, J., Mahjoubfar, A., Diebold, E. D., Buckley, B. W., & Jalali, B. (2013). Spectrally encoded angular light scattering. Optics Express, 21(23), 28960–28967.CrossRef
159.
Zurück zum Zitat Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner, M. (2007). Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 104(48), 18892–18897.CrossRef Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner, M. (2007). Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 104(48), 18892–18897.CrossRef
160.
Zurück zum Zitat Diebold, E. D., Hon, N. K., Tan, Z., Chou, J., Sienicki, T., Wang, C., & Jalali, B. (2011). Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Optics Express, 19(24), 23809–23817.CrossRef Diebold, E. D., Hon, N. K., Tan, Z., Chou, J., Sienicki, T., Wang, C., & Jalali, B. (2011). Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Optics Express, 19(24), 23809–23817.CrossRef
Metadaten
Titel
Optical Data Compression in Time Stretch Imaging
verfasst von
Ata Mahjoubfar
Claire Lifan Chen
Bahram Jalali
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51448-2_9

Neuer Inhalt