2018 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
In this paper, we implement a local path planning method for quadrotor vehicle. The visual potential is utilized to guide the vehicle which is built by gradient vectors and TTC information of obstacles obtained through optical flow. Compared to traditional method, our method is more general and lower computational for calculating visual potential. Using the visual potential, the quadrotor vehicle dynamically determines the yaw angle and autonomously generates a collision free path to the destination via a PID controller operating as the dynamic control scheme without any prior knowledge or environmental maps of the workspace. The experiments carried out in virtual environments show the better feasibility of our technique for path planning.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Chao H, Gu Y, Napolitano M (2013) A survey of optical flow techniques for UAV navigation applications. International Conference on Unmanned Aircraft Systems (Vol.73, pp. 710–716)
2.
Dolgov D, Thrun S, Montemerlo M, Diebel J (2010) Path planning for autonomous vehicles in unknown semi-structured environments. Int J Robot Res 29(5):485–501
CrossRef
3.
Eresen A, İmamoğlu N, Efe MÖ (2012) Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment. Expert Syst Appl 39(1):894–905
4.
Huang WH, Fajen BR, Fink JR, Warren WH (2006) Visual navigation and obstacle avoidance using a steering potential function. Robot Auton Syst 54(4):288–299
CrossRef
5.
Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. IEEE international conference on robotics and automation, vol 2, pp 500–505
6.
Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. International joint conference on artificial intelligence, vol 73, pp 674–679. Morgan Kaufmann Publishers Inc
7.
Ohnishi N, Imiya A (2008) Visual navigation of mobile robot using optical flow and visual potential field. Robot Vis. Springer, Berlin Heidelberg, 412–426
8.
Sedigh KH, Ashenayi K, Manikas TW, Wainwright RL (2004) Autonomous local path planning for a mobile robot using a genetic algorithm. Evolutionary Computation CEC2004, Vol 2, pp 1338–1345
9.
Souhila K, Karim A (2007) Optical flow based robot obstacle avoidance. Int J Adv Rob Syst 4(1):2
CrossRef
10.
Yu H, Sharma R, Beard RW, Taylor CN (2013) Observability-based local path planning and obstacle avoidance using bearing-only measurements. Robot Auton Syst 61(12):1392–1405
CrossRef
- Titel
- Optical Flow Based Obstacle Avoidance and Path Planning for Quadrotor Flight
- DOI
- https://doi.org/10.1007/978-981-10-6445-6_69
- Autoren:
-
Huiqi Miao
Yan Wang
- Verlag
- Springer Singapore
- Sequenznummer
- 69