Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Photonic Network Communications 1/2020

17.06.2020 | Original Paper

Optical four-channel demultiplexer based on air-bridge structure and graphite-type ring resonators

verfasst von: Saleh Naghizade, Saber Mohammadi

Erschienen in: Photonic Network Communications | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

A novel an optical four-channel demultiplexer based on a hexagonal lattice shape of embedded air holes in dielectric substrate (air-bridge type) is proposed. Demultiplexing for each channel is obtained by designing the graphite-type ring resonator which consists of small air hole defects in own unit cells. The physical parameters which govern the demultiplexer performance are investigated. It is observed that employing big air hole as a defect in the end of input waveguide enhanced the coupling efficiency between the rings and waveguides. By engineering the refractive index of substrate and size of air holes, the proposed demultiplexer is tuned. The demultiplexer has an average quality factor > 3000 and channel spacing \(\Delta \lambda \le 2\;{\text{nm}}\). We showed that big air hole defect in the end of input waveguide is an effective scheme for improving the transmission efficiency and cross talk between channels. The average transmission efficiency and cross talk value are above 98% and − 23 dB, respectively. The total size of proposed structure and its maximum delay time are 289 μm2 and 0.3 ps, respectively. Our demultiplexer has an easy fabrication structure, and it can find key applications for many cores CPU in an on-chip optical network and the dense wavelength demultiplexing in optical integrated circuits.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: molding the flow of light, 2nd edn. PrincetonUniversity Press, Princeton (2008) MATH Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: molding the flow of light, 2nd edn. PrincetonUniversity Press, Princeton (2008) MATH
2.
Zurück zum Zitat Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008) Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008)
3.
Zurück zum Zitat Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002) Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002)
4.
Zurück zum Zitat Rawal, S., Sinha, R.K.: Design, analysis and optimizationof silicon-on-insulator photonic crystal dual band wavelengthdemultiplexer. Opt. Commun. 686, 3889–3894 (2009) demultiplexer. Opt. Commun. 686, 3889–3894 (2009) Rawal, S., Sinha, R.K.: Design, analysis and optimizationof silicon-on-insulator photonic crystal dual band wavelengthdemultiplexer. Opt. Commun. 686, 3889–3894 (2009) demultiplexer. Opt. Commun. 686, 3889–3894 (2009)
5.
Zurück zum Zitat Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw. Commun. 34, 445–450 (2017) Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw. Commun. 34, 445–450 (2017)
6.
Zurück zum Zitat Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. LightwaveTechnol. 19, 1970–1975 (2001) Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. LightwaveTechnol. 19, 1970–1975 (2001)
7.
Zurück zum Zitat Niemi, T., Frandsen, L.H., Hede, K.K., Harpoth, A., Bore, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Technol. Lett. 18, 226–228 (2006) Niemi, T., Frandsen, L.H., Hede, K.K., Harpoth, A., Bore, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Technol. Lett. 18, 226–228 (2006)
8.
Zurück zum Zitat Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., et al.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006) Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., et al.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006)
9.
Zurück zum Zitat Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008) Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008)
10.
Zurück zum Zitat Khorshid Ahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010) Khorshid Ahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)
11.
Zurück zum Zitat Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012) Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012)
12.
Zurück zum Zitat Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007) Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007)
13.
Zurück zum Zitat Kanamori, Y., Takahashi, K., Hane, K.: An ultra-small wavelength selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009) Kanamori, Y., Takahashi, K., Hane, K.: An ultra-small wavelength selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009)
14.
Zurück zum Zitat Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013) Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)
15.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., HassangholizadehKashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014) Alipour-Banaei, H., Mehdizadeh, F., HassangholizadehKashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014)
17.
Zurück zum Zitat Rostami, A., Alipour-Banaei, H., Nazari, F., Bahrami, A.: An ultracompact photonic crystal wavelength division demultiplexerusing resonance cavities in a modified Y-branch structure. Optik. Int. J. Light Electron Opt. 122, 1481–1485 (2011) Rostami, A., Alipour-Banaei, H., Nazari, F., Bahrami, A.: An ultracompact photonic crystal wavelength division demultiplexerusing resonance cavities in a modified Y-branch structure. Optik. Int. J. Light Electron Opt. 122, 1481–1485 (2011)
18.
Zurück zum Zitat Rostami, A., Habibiyan, H., Nazari, F., Bahrami, A., Alipour-Banaei, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. In: Communications and Photonics Conference and Exhibition (ACP). Asia IEEE (2009) Rostami, A., Habibiyan, H., Nazari, F., Bahrami, A., Alipour-Banaei, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. In: Communications and Photonics Conference and Exhibition (ACP). Asia IEEE (2009)
19.
Zurück zum Zitat Rostami, A., Nazari, F., Alipour-Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010) Rostami, A., Nazari, F., Alipour-Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)
20.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M.: A new proposal for eight channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016) Mehdizadeh, F., Soroosh, M.: A new proposal for eight channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016)
22.
Zurück zum Zitat Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124, 5923–5926 (2013) Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124, 5923–5926 (2013)
23.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013) Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)
24.
Zurück zum Zitat Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015) MATH Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015) MATH
26.
Zurück zum Zitat Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47, 1109–1115 (2015) MATH Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47, 1109–1115 (2015) MATH
27.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48, 20–28 (2015) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48, 20–28 (2015)
28.
Zurück zum Zitat Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017) Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017)
29.
Zurück zum Zitat Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017) Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017)
30.
Zurück zum Zitat Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofuidic infiltration. Opt. Quant. Electron. 51, 17–31 (2018) Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofuidic infiltration. Opt. Quant. Electron. 51, 17–31 (2018)
31.
Zurück zum Zitat Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Exp. 14, 7966–7973 (2006) Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Exp. 14, 7966–7973 (2006)
32.
Zurück zum Zitat Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Optik Int. J. Light Electron Opt. 125, 6520–6523 (2014) Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Optik Int. J. Light Electron Opt. 125, 6520–6523 (2014)
33.
Zurück zum Zitat Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016) Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016)
34.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017)
35.
Zurück zum Zitat Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47(5), 1109–1115 (2015) MATH Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47(5), 1109–1115 (2015) MATH
36.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017)
39.
Zurück zum Zitat Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013) Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013)
40.
Zurück zum Zitat Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. PhotonicNetw Commun. 33, 159–165 (2017) Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. PhotonicNetw Commun. 33, 159–165 (2017)
41.
Zurück zum Zitat Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018) Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)
42.
Zurück zum Zitat Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013) Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013)
43.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015) Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015)
44.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016)
45.
Zurück zum Zitat Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 15, 50 (2018) Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 15, 50 (2018)
46.
Zurück zum Zitat Vogelaar, L.: Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv. Mat. 13, 1551 (2001) Vogelaar, L.: Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv. Mat. 13, 1551 (2001)
47.
Zurück zum Zitat Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Pérot microcavity reflection feedback. Optik. Int. J. Light Electron Opt. 124, 2608–2611 (2013) Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Pérot microcavity reflection feedback. Optik. Int. J. Light Electron Opt. 124, 2608–2611 (2013)
48.
Zurück zum Zitat Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001) Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)
49.
Zurück zum Zitat Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005) Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005)
50.
Zurück zum Zitat Gedney, S.D.: Introduction to finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool, Lexington (2010) MATH Gedney, S.D.: Introduction to finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool, Lexington (2010) MATH
51.
Zurück zum Zitat Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999) MathSciNetMATH Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999) MathSciNetMATH
Metadaten
Titel
Optical four-channel demultiplexer based on air-bridge structure and graphite-type ring resonators
verfasst von
Saleh Naghizade
Saber Mohammadi
Publikationsdatum
17.06.2020
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 1/2020
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00889-6

Weitere Artikel der Ausgabe 1/2020

Photonic Network Communications 1/2020 Zur Ausgabe