Skip to main content

2019 | OriginalPaper | Buchkapitel

11. Optical Signal Processing

verfasst von : Keigo Iizuka

Erschienen in: Engineering Optics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter covers optical signal processing of various sorts. Knowledge of diffraction, lenses, FFT, and holography, covered in Chaps. 3, 6, 7, and 8, respectively, is used extensively in this chapter. In addition to coherent and inco- herent optical processing, this chapter also includes a section on tomography. Many examples are given in this chapter with the hope that they will stimulate the reader’s imagination to develop new techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In coherent systems, the term “impulse response function” refers to the output amplitude from a system to which an amplitude delta function has been applied. In incoherent systems, impulse response function usually refers to the intensity output from a system to which an intensity delta function has been applied.
 
2
All Hi in Fig. 11.48b are on the same circle and ϕ ranges from ϕ = ϕ0 to ϕN covering π radians.
 
3
In formulating simultaneous equations, one should make sure that the equations are independent. For instance, simultaneous equations made by choosing such projections as shown in Fig. 11.50 do not have a unique solution because the equations are not all independent. This can be checked by the determinant, which must be non-zero for a unique solution to exist. Simultaneous equations made by the choice of projections shown in Fig. 11.50 are
$$ \left| {\begin{array}{*{20}l} 1 \hfill & 1 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 1 \hfill & 0 \hfill & 1 \hfill \\ 0 \hfill & 0 \hfill & 1 \hfill & 1 \hfill \\ 1 \hfill & 0 \hfill & 1 \hfill & 0 \hfill \\ \end{array} } \right|\,\,\,\left[ {\begin{array}{*{20}c} A \\ B \\ C \\ D \\ \end{array} } \right]\,\, = \left[ {\begin{array}{*{20}c} {S_{1} } \\ {S_{2} } \\ {S_{3} } \\ {S_{4} } \\ \end{array} } \right] $$
The determinant is zero. The determinant of the simultaneous equations in Fig. 11.49 is non zero.
 
4
The easiest way to perform the two-dimensional Fourier transform is to first arrange the inputs in a matrix form and perform the one-dimensional transform along the row elements and put back the Fourier transformed results in the respective row of the matrix. Using these new matrix elements, the same process is then carried out for the column elements. The result is the two-dimensional Fourier transform. Similar calculation but with the origin at the upper left corner of the square is found in (12.​2712.​29) in Chap. 12.
 
Metadaten
Titel
Optical Signal Processing
verfasst von
Keigo Iizuka
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-69251-7_11

Neuer Inhalt