Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2016 | Original Paper | Ausgabe 6/2016

Machine Vision and Applications 6/2016

OptiFuzz: a robust illumination invariant face recognition system and its implementation

Zeitschrift:
Machine Vision and Applications > Ausgabe 6/2016
Autoren:
Bima Sena Bayu Dewantara, Jun Miura
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00138-016-0790-6) contains supplementary material, which is available to authorized users.

Abstract

Vision-based human face detection and recognition are widely used and have been shown to be effective in normal illumination conditions. Under severe illumination conditions, however, it is very challenging. In this paper, we address the effect of illumination on the face detection and the face recognition problem by introducing a novel illumination invariant method, called OptiFuzz. It is an optimized fuzzy-based illumination invariant method to solve the effect of illumination for photometric-based human face recognition. The rule of the Fuzzy Inference System is optimized by using a genetic algorithm. The Fuzzy’s output controls an illumination invariant model that is extended from Land’s reflectance model. We test our method by using Yale B Extended and CAS-PEAL face databases to represent the offline experiments, and several videos are recorded at our campus to represent the online indoor and outdoor experiments. Viola–Jones face detector and mutual subspace method are employed to handle the online face detection and face recognition experiments. Based on the experimental results, we can show that our algorithm outperforms the existing and the state-of-the-art methods in recognizing a specific person under variable lighting conditions with a significantly improved computation time. Other than that, using illumination invariant images is also effective in improving the face detection performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Supplementary material 1 (wmv 25033 KB)
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2016

Machine Vision and Applications 6/2016 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise