Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.02.2020 | Regular Article Open Access

Optimal allocation of defibrillator drones in mountainous regions

Zeitschrift:
OR Spectrum
Autoren:
Christian Wankmüller, Christian Truden, Christopher Korzen, Philipp Hungerländer, Ewald Kolesnik, Gerald Reiner
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Responding to emergencies in Alpine terrain is quite challenging as air ambulances and mountain rescue services are often confronted with logistics challenges and adverse weather conditions that extend the response times required to provide life-saving support. Among other medical emergencies, sudden cardiac arrest (SCA) is the most time-sensitive event that requires the quick provision of medical treatment including cardiopulmonary resuscitation and electric shocks by automated external defibrillators (AED). An emerging technology called unmanned aerial vehicles (or drones) is regarded to support mountain rescuers in overcoming the time criticality of these emergencies by reducing the time span between SCA and early defibrillation. A drone that is equipped with a portable AED can fly from a base station to the patient’s site where a bystander receives it and starts treatment. This paper considers such a response system and proposes an integer linear program to determine the optimal allocation of drone base stations in a given geographical region. In detail, the developed model follows the objectives to minimize the number of used drones and to minimize the average travel times of defibrillator drones responding to SCA patients. In an example of application, under consideration of historical helicopter response times, the authors test the developed model and demonstrate the capability of drones to speed up the delivery of AEDs to SCA patients. Results indicate that time spans between SCA and early defibrillation can be reduced by the optimal allocation of drone base stations in a given geographical region, thus increasing the survival rate of SCA patients.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise