Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.11.2018

Optimal binary constant weight codes and affine linear groups over finite fields

Zeitschrift:
Designs, Codes and Cryptography
Autor:
Xiang-Dong Hou
Wichtige Hinweise
Communicated by Q. Xiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The affine linear group of degree one, \(\text {AGL}(1,\mathbb {F}_q)\), over the finite field \(\mathbb {F}_q\), acts sharply two-transitively on \(\mathbb {F}_q\). Given \(S<\text {AGL}(1,\mathbb {F}_q)\) and an integer k, \(1\le k\le q\), does there exist a k-element subset \(B\subset \mathbb {F}_q\) whose set-wise stabilizer is S? Our main result is the derivation of two formulas which provide an answer to this question. This result allows us to determine all possible parameters of binary constant weight codes that are constructed from the action of \(\text {AGL}(1,\mathbb {F}_q)\) on \(\mathbb {F}_q\) to meet the Johnson bound. Consequently, for many parameters, we are able to determine the values of the function \(A_2(n,d,w)\), which is the maximum number of codewords in a binary constant weight code of length n, weight w and minimum distance \(\ge d\).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise