Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2021

17.11.2020

Optimal Control of Malware Spreading Model with Tracing and Patching in Wireless Sensor Networks

verfasst von: Senthilkumar Muthukrishnan, Sumathi Muthukumar, Veeramani Chinnadurai

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Wireless sensor networks (WSNs), which emerge from an un-attended environment monitoring, are deployed for monitoring purposes in different environments. But, WSNs suffer from vulnerable malware to propagate via exploiting message exchange among the sensor nodes. To draw attention to this issue, this paper investigates an optimal control strategy to reduce the spread of malware in wireless sensor networks. A node-based epidemic model Susceptible-Infected-Traced-Patched-Susceptible is analyzed. The optimal control strategies are analytically investigated. The proposed optimal strategy achieves a low level of infections at a low cost. Finally, numerical illustrations are presented to show the spread of malware through infected nodes which can be effectively suppressed by adopting the suitable optimal control strategy.
Literatur
1.
Zurück zum Zitat Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37(6), 4103–4111. MathSciNetCrossRef Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37(6), 4103–4111. MathSciNetCrossRef
2.
Zurück zum Zitat Tang, S., & Mark, B. L. (2009). Analysis of virus spread in wireless sensor networks: An epidemic model. In 2009 7th International workshop on design of reliable communication networks (pp. 86–91). IEEE. Tang, S., & Mark, B. L. (2009). Analysis of virus spread in wireless sensor networks: An epidemic model. In 2009 7th International workshop on design of reliable communication networks (pp. 86–91). IEEE.
3.
Zurück zum Zitat Zennaro, M., Pehrson, B., & Bagula, A. (2008). Wireless sensor networks: A great opportunity for researchers in developing countries. In Proceedings of WCITD2008 conference, Pretoria, South Africa (Vol. 67). Zennaro, M., Pehrson, B., & Bagula, A. (2008). Wireless sensor networks: A great opportunity for researchers in developing countries. In Proceedings of WCITD2008 conference, Pretoria, South Africa (Vol. 67).
4.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422. CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422. CrossRef
5.
Zurück zum Zitat Singh, A., & Snigdh, I. (2017). Modelling failure conditions in zigbee based wireless sensor networks. International Journal of Wireless and Microwave Technologies (IJWMT), 2, 25–34. CrossRef Singh, A., & Snigdh, I. (2017). Modelling failure conditions in zigbee based wireless sensor networks. International Journal of Wireless and Microwave Technologies (IJWMT), 2, 25–34. CrossRef
7.
Zurück zum Zitat Khayam, S. A., & Radha, H. (2005). A topologically-aware worm propagation model for wireless sensor networks. In 25th IEEE international conference on distributed computing systems workshops (pp. 210–216). IEEE. Khayam, S. A., & Radha, H. (2005). A topologically-aware worm propagation model for wireless sensor networks. In 25th IEEE international conference on distributed computing systems workshops (pp. 210–216). IEEE.
8.
Zurück zum Zitat De, P., Liu, Y. and Das, S. K. (2007). An epidemic theoretic framework for evaluating broadcast protocols in wireless sensor networks. In 2007 IEEE International conference on mobile adhoc and sensor systems (pp. 1–9). IEEE. De, P., Liu, Y. and Das, S. K. (2007). An epidemic theoretic framework for evaluating broadcast protocols in wireless sensor networks. In 2007 IEEE International conference on mobile adhoc and sensor systems (pp. 1–9). IEEE.
9.
Zurück zum Zitat De, P., Liu, Y., & Das, S. K. (2008). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions on Mobile Computing, 8(3), 413–425. CrossRef De, P., Liu, Y., & Das, S. K. (2008). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions on Mobile Computing, 8(3), 413–425. CrossRef
10.
Zurück zum Zitat Wang, X., Li, Q., & Li, Y. (2010). EiSIRS: a formal model to analyze the dynamics of worm propagation in wireless sensor networks. Journal of Combinatorial Optimization, 20(1), 47–62. MathSciNetCrossRef Wang, X., Li, Q., & Li, Y. (2010). EiSIRS: a formal model to analyze the dynamics of worm propagation in wireless sensor networks. Journal of Combinatorial Optimization, 20(1), 47–62. MathSciNetCrossRef
11.
Zurück zum Zitat Ya-Qi, W., & Xiao-Yuan, Y. (2013). Virus spreading in wireless sensor networks with a medium access control mechanism. Chinese Physics B, 22(4), 040206. CrossRef Ya-Qi, W., & Xiao-Yuan, Y. (2013). Virus spreading in wireless sensor networks with a medium access control mechanism. Chinese Physics B, 22(4), 040206. CrossRef
12.
Zurück zum Zitat Mishra, B. K., Srivastava, S. K., & Mishra, B. K. (2014). A quarantine model on the spreading behavior of worms in wireless sensor network. Transaction on IoT and Cloud Computing, 2(1), 1–12. CrossRef Mishra, B. K., Srivastava, S. K., & Mishra, B. K. (2014). A quarantine model on the spreading behavior of worms in wireless sensor network. Transaction on IoT and Cloud Computing, 2(1), 1–12. CrossRef
13.
Zurück zum Zitat Mishra, B. K., & Tyagi, I. (2014). Defending against malicious threats in wireless sensor network: A mathematical model. International Journal of Information Technology and Computer Science, 6(3), 12–19. CrossRef Mishra, B. K., & Tyagi, I. (2014). Defending against malicious threats in wireless sensor network: A mathematical model. International Journal of Information Technology and Computer Science, 6(3), 12–19. CrossRef
14.
Zurück zum Zitat Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Difference Equations, 2014(1), 295. MathSciNetCrossRef Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Difference Equations, 2014(1), 295. MathSciNetCrossRef
15.
Zurück zum Zitat Nwokoye, C. H., Ozoegwu, G. C., & Ejiofor, V. E. (2017). Pre-quarantine approach for defense against propagation of malicious objects in networks. International Journal of Computer Network and Information Security, 9(2), 43. CrossRef Nwokoye, C. H., Ozoegwu, G. C., & Ejiofor, V. E. (2017). Pre-quarantine approach for defense against propagation of malicious objects in networks. International Journal of Computer Network and Information Security, 9(2), 43. CrossRef
17.
Zurück zum Zitat Biswal, S. R., & Swain, S. K. (2019). Model for study of malware propagation dynamics in wireless sensor network. In 2019 3rd International conference on trends in electronics and informatics (ICOEI) (pp. 647–653). India: Tirunelveli. Biswal, S. R., & Swain, S. K. (2019). Model for study of malware propagation dynamics in wireless sensor network. In 2019 3rd International conference on trends in electronics and informatics (ICOEI) (pp. 647–653). India: Tirunelveli.
18.
Zurück zum Zitat Shen, S., Zhou, H., Feng, S., Liu, J., & Cao, Q. (2019). SNIRD: Disclosing rules of malware spread in heterogeneous wireless sensor networks. IEEE Access, 7, 92881–92892. CrossRef Shen, S., Zhou, H., Feng, S., Liu, J., & Cao, Q. (2019). SNIRD: Disclosing rules of malware spread in heterogeneous wireless sensor networks. IEEE Access, 7, 92881–92892. CrossRef
19.
Zurück zum Zitat Singh, A., Awasthi, A. K., & Singh, K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communication, 98, 2535–2551. CrossRef Singh, A., Awasthi, A. K., & Singh, K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communication, 98, 2535–2551. CrossRef
20.
Zurück zum Zitat Awasthi S., Kumar N. and Srivastava P. K. (2020). A study of epidemic approach for worm propagation in wireless sensor network. In Solanki V., Hoang M., Lu Z., Pattnaik P. (Eds.), Intelligent computing in engineering. Advances in intelligent systems and computing, vol 1125. Springer, Singapore. Awasthi S., Kumar N. and Srivastava P. K. (2020). A study of epidemic approach for worm propagation in wireless sensor network. In Solanki V., Hoang M., Lu Z., Pattnaik P. (Eds.), Intelligent computing in engineering. Advances in intelligent systems and computing, vol 1125. Springer, Singapore.
21.
Zurück zum Zitat Batista, F. K., Martín del Rey, A., & Queiruga-Dios, A. (2020). A new individual-based model to simulate malware propagation in wireless sensor networks. Mathematics, 8, 410. CrossRef Batista, F. K., Martín del Rey, A., & Queiruga-Dios, A. (2020). A new individual-based model to simulate malware propagation in wireless sensor networks. Mathematics, 8, 410. CrossRef
22.
Zurück zum Zitat Zhang, T., Yang, L. X., Yang, X., Wu, Y., & Tang, Y. Y. (2017). Dynamic malware containment under an epidemic model with alert. Physica A: Statistical Mechanics and its Applications, 470, 249–260. MathSciNetCrossRef Zhang, T., Yang, L. X., Yang, X., Wu, Y., & Tang, Y. Y. (2017). Dynamic malware containment under an epidemic model with alert. Physica A: Statistical Mechanics and its Applications, 470, 249–260. MathSciNetCrossRef
23.
Zurück zum Zitat Li, P., Yang, X., Wu, Y., He, W., & Zhao, P. (2018). Discount pricing in word-of-mouth marketing: An optimal control approach. Physica A: Statistical Mechanics and its Applications, 505, 512–522. MathSciNetCrossRef Li, P., Yang, X., Wu, Y., He, W., & Zhao, P. (2018). Discount pricing in word-of-mouth marketing: An optimal control approach. Physica A: Statistical Mechanics and its Applications, 505, 512–522. MathSciNetCrossRef
25.
Zurück zum Zitat Van Mieghem, P., Omic, J., & Kooij, R. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking (TON), 17(1), 1–14. CrossRef Van Mieghem, P., Omic, J., & Kooij, R. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking (TON), 17(1), 1–14. CrossRef
26.
27.
Zurück zum Zitat Dadlani, A., Kumar, M. S., Maddi, M. G., & Kim, K. (2017). Mean-field dynamics of inter-switching memes competing over multiplex social networks. IEEE Communications Letters, 21(5), 967–970. CrossRef Dadlani, A., Kumar, M. S., Maddi, M. G., & Kim, K. (2017). Mean-field dynamics of inter-switching memes competing over multiplex social networks. IEEE Communications Letters, 21(5), 967–970. CrossRef
28.
Zurück zum Zitat Muthukumar, S., Muthukrishnan, S., & Chinnadurai, V. (2019). Dynamic behaviour of competing memes’ spread with alert influence in multiplex social-networks. Computing, 101(8), 1177–1197. MathSciNetCrossRef Muthukumar, S., Muthukrishnan, S., & Chinnadurai, V. (2019). Dynamic behaviour of competing memes’ spread with alert influence in multiplex social-networks. Computing, 101(8), 1177–1197. MathSciNetCrossRef
29.
Zurück zum Zitat Sahneh, F. D., Scoglio, C., & Van Mieghem, P. (2013). Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Transactions on Networking (TON), 21(5), 1609–1620. CrossRef Sahneh, F. D., Scoglio, C., & Van Mieghem, P. (2013). Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Transactions on Networking (TON), 21(5), 1609–1620. CrossRef
30.
Zurück zum Zitat Yang, L. X., Draief, M., & Yang, X. (2016). The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model. Physica A: Statistical Mechanics and its Applications, 450, 403–415. MathSciNetCrossRef Yang, L. X., Draief, M., & Yang, X. (2016). The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model. Physica A: Statistical Mechanics and its Applications, 450, 403–415. MathSciNetCrossRef
31.
Zurück zum Zitat Sahneh, F. D., Vajdi, A., Shakeri, H., Fan, F., & Scoglio, C. (2017). GEMFsim: A stochastic simulator for the generalized epidemic modeling framework. Journal of Computational Science, 22, 36–44. CrossRef Sahneh, F. D., Vajdi, A., Shakeri, H., Fan, F., & Scoglio, C. (2017). GEMFsim: A stochastic simulator for the generalized epidemic modeling framework. Journal of Computational Science, 22, 36–44. CrossRef
32.
Zurück zum Zitat Li, P., Yang, L. X., Yang, X., Zhong, X., Wen, J., & Xiong, Q. (2019). Energy-efficient patching strategy for wireless sensor networks. Sensors, 19(2), 262. CrossRef Li, P., Yang, L. X., Yang, X., Zhong, X., Wen, J., & Xiong, Q. (2019). Energy-efficient patching strategy for wireless sensor networks. Sensors, 19(2), 262. CrossRef
Metadaten
Titel
Optimal Control of Malware Spreading Model with Tracing and Patching in Wireless Sensor Networks
verfasst von
Senthilkumar Muthukrishnan
Sumathi Muthukumar
Veeramani Chinnadurai
Publikationsdatum
17.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07959-y

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe