Skip to main content

2017 | OriginalPaper | Buchkapitel

Optimal Control of Variable Stiffness Policies: Dealing with Switching Dynamics and Model Mismatch

verfasst von : Andreea Radulescu, Jun Nakanishi, David J. Braun, Sethu Vijayakumar

Erschienen in: Geometric and Numerical Foundations of Movements

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Controlling complex robotic platforms is a challenging task, especially in designs with high levels of kinematic redundancy. Novel variable stiffness actuators (VSAs) have recently demonstrated the possibility of achieving energetically more efficient and safer behaviour by allowing the ability to simultaneously modulate the output torque and stiffness while adding further levels of actuation redundancy. An optimal control approach has been demonstrated as an effective method for such a complex actuation mechanism in order to devise a control strategy that simultaneously provides optimal control commands and time-varying stiffness profiles. However, traditional optimal control formulations have typically focused on optimisation of the tasks over a predetermined time horizon with smooth, continuous plant dynamics. In this chapter, we address the optimal control problem of robotic systems with VSAs for the challenging domain of switching dynamics and discontinuous state transition arising from interactions with an environment. First, we present a systematic methodology to simultaneously optimise control commands, time-varying stiffness profiles as well as the optimal switching instances and total movement duration based on a time-based switching hybrid dynamics formulation. We demonstrate the effectiveness of our approach on the control of a brachiating robot with a VSA considering multi-phase swing-up and locomotion tasks as an illustrative application of our proposed method in order to exploit the benefits of the VSA and intrinsic dynamics of the system. Then, to address the issue of model discrepancies in model-based optimal control, we extend the proposed framework by incorporating an adaptive learning algorithm. This performs continuous data-driven adjustments to the dynamics model while re-planning optimal policies that reflect this adaptation. We show that this augmented approach is able to handle a range of model discrepancies in both simulations and hardware experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
iLQG is the stochastic extension to iLQR [13] and in the sequel, we may refer to these two interchangeably.
 
2
\({\varvec{\alpha }}=\mathrm {diag}(a_1, \ldots , a_m)\) and \({\varvec{\alpha }}^2=\mathrm {diag}(a_1^2, \ldots , a_m^2)\) for notational convenience.
 
3
We include position controlled servo motor dynamics as defined in (6). For the bandwidth parameters for the motors we use \({\varvec{\alpha }}= \mathrm {diag} (20, 25)\). The range of the commands of the servo motors are limited as \(u_1 \in [-\pi /2, \pi /2]\) and \(u_2 \in [0, \pi /2]\).
 
4
In the brachiating robot model in Fig. 2, \(q=q_2\).
 
5
Hereafter, we use the term iLQG for the optimisation algorithm of our concern.
 
6
Note that the changes introduced by iLQG-LD only affect the dynamics modelling in (1), while the instantaneous state transition map in (2) remains unchanged.
 
7
We assume that if the position at the end of each phase is within a threshold \(\varepsilon _{T}=0.040\) m from the desired target, the system is able to start the next phase movement from the ideal location considering the effect of the gripper on the hardware.
 
8
With the reduced input dimensionality, practically, there could be the case that it is not possible to predict the full state of the system particularly in the swing-up motion due to unobserved input dimensions. Thus, we only considered the swing locomotion task in the hardware experiment with model learning.
 
Literatur
1.
Zurück zum Zitat C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning for control. Artif. Intell. Rev. 11(1–5), 75–113 (1997)CrossRef C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning for control. Artif. Intell. Rev. 11(1–5), 75–113 (1997)CrossRef
2.
Zurück zum Zitat G. Bätz, U. Mettin, A. Schmidts, M. Scheint, D. Wollherr, A. S. Shiriaev, Ball dribbling with an underactuated continuous-time control phase: theory and experiments, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2010), pp. 2890–2895 G. Bätz, U. Mettin, A. Schmidts, M. Scheint, D. Wollherr, A. S. Shiriaev, Ball dribbling with an underactuated continuous-time control phase: theory and experiments, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2010), pp. 2890–2895
3.
Zurück zum Zitat D. Braun, M. Howard, S. Vijayakumar, Optimal variable stiffness control: formulation and application to explosive movement tasks. Auton. Robot. 33(3), 237–253 (2012)CrossRef D. Braun, M. Howard, S. Vijayakumar, Optimal variable stiffness control: formulation and application to explosive movement tasks. Auton. Robot. 33(3), 237–253 (2012)CrossRef
4.
Zurück zum Zitat D.J. Braun, F. Petit, F. Huber, S. Haddadin, P. van der Smagt, A. Albu-Schäffer, S. Vijayakumar, Robots driven by compliant actuators: optimal control under actuation constraints. IEEE Trans. Robot. 29(5), 1085–1101 (2013)CrossRef D.J. Braun, F. Petit, F. Huber, S. Haddadin, P. van der Smagt, A. Albu-Schäffer, S. Vijayakumar, Robots driven by compliant actuators: optimal control under actuation constraints. IEEE Trans. Robot. 29(5), 1085–1101 (2013)CrossRef
5.
Zurück zum Zitat A.E. Bryson, Y.-C. Ho, Applied Optimal Control (Taylor and Francis, United Kingdom, 1975) A.E. Bryson, Y.-C. Ho, Applied Optimal Control (Taylor and Francis, United Kingdom, 1975)
6.
Zurück zum Zitat M. Buehler, D.E. Koditschek, P.J. Kindlmann, Planning and control of robotic juggling and catching tasks. Int. J. Robot. Res. 13(2), 101–118 (1994)CrossRef M. Buehler, D.E. Koditschek, P.J. Kindlmann, Planning and control of robotic juggling and catching tasks. Int. J. Robot. Res. 13(2), 101–118 (1994)CrossRef
7.
Zurück zum Zitat M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bulirsch, G. Schmidt, Nonlinear hybrid dynamical systems: modeling, optimal control, and applications, in Lecture Notes in Control and Information Science (Springer, Heidelberg, 2002), pp. 311–335 M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bulirsch, G. Schmidt, Nonlinear hybrid dynamical systems: modeling, optimal control, and applications, in Lecture Notes in Control and Information Science (Springer, Heidelberg, 2002), pp. 311–335
8.
Zurück zum Zitat T.M. Caldwell, T.D. Murphey, Switching mode generation and optimal estimation with application to skid-steering. Automatica 47(1), 50–64 (2011)MathSciNetCrossRefMATH T.M. Caldwell, T.D. Murphey, Switching mode generation and optimal estimation with application to skid-steering. Automatica 47(1), 50–64 (2011)MathSciNetCrossRefMATH
9.
Zurück zum Zitat M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancini, N. Tsagarakis, A. Bicchi. VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots, in IEEE International Conference on Robotics and Automation (2011), pp. 5090–5095 M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancini, N. Tsagarakis, A. Bicchi. VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots, in IEEE International Conference on Robotics and Automation (2011), pp. 5090–5095
10.
Zurück zum Zitat M. Gomes, A. Ruina, A five-link 2D brachiating ape model with life-like zero-energy-cost motions. J. Theor. Biol. 237(3), 265–278 (2005)MathSciNetCrossRef M. Gomes, A. Ruina, A five-link 2D brachiating ape model with life-like zero-energy-cost motions. J. Theor. Biol. 237(3), 265–278 (2005)MathSciNetCrossRef
11.
Zurück zum Zitat K. Goris, J. Saldien, B. Vanderborght, D. Lefeber, Mechanical design of the huggable robot probo. Int. J. Humanoid Robot. 8(3), 481–511 (2011)CrossRef K. Goris, J. Saldien, B. Vanderborght, D. Lefeber, Mechanical design of the huggable robot probo. Int. J. Humanoid Robot. 8(3), 481–511 (2011)CrossRef
12.
Zurück zum Zitat S. S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, R. Carloni, The vsaUT-II: A novel rotational variable stiffness actuator, in IEEE International Conference on Robotics and Automation (2012), pp. 3355–3360 S. S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, R. Carloni, The vsaUT-II: A novel rotational variable stiffness actuator, in IEEE International Conference on Robotics and Automation (2012), pp. 3355–3360
13.
Zurück zum Zitat W. Li, E. Todorov, Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. Int. J. Control 80(9), 1439–1453 (2007)MathSciNetCrossRefMATH W. Li, E. Todorov, Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. Int. J. Control 80(9), 1439–1453 (2007)MathSciNetCrossRefMATH
14.
Zurück zum Zitat A.W. Long, T.D. Murphey, K.M. Lynch, Optimal motion planning for a class of hybrid dynamical systems with impacts, in IEEE International Conference on Robotics and Automation (2011), pp. 4220–4226 A.W. Long, T.D. Murphey, K.M. Lynch, Optimal motion planning for a class of hybrid dynamical systems with impacts, in IEEE International Conference on Robotics and Automation (2011), pp. 4220–4226
15.
Zurück zum Zitat D. Mitrovic, S. Klanke, M. Howard, S. Vijayakumar, Exploiting sensorimotor stochasticity for learning control of variable impedance actuators, in IEEE-RAS International Conference on Humanoid Robots (2010), pp. 536–541 D. Mitrovic, S. Klanke, M. Howard, S. Vijayakumar, Exploiting sensorimotor stochasticity for learning control of variable impedance actuators, in IEEE-RAS International Conference on Humanoid Robots (2010), pp. 536–541
16.
Zurück zum Zitat D. Mitrovic, S. Klanke, S. Vijayakumar, Optimal control with adaptive internal dynamics models, in Fifth International Conference on Informatics in Control, Automation and Robotics (2008) D. Mitrovic, S. Klanke, S. Vijayakumar, Optimal control with adaptive internal dynamics models, in Fifth International Conference on Informatics in Control, Automation and Robotics (2008)
17.
Zurück zum Zitat D. Mitrovic, S. Klanke, S. Vijayakumar, Adaptive optimal feedback control with learned internal dynamics models, in From Motor Learning to Interaction Learning in Robots (2010), pp. 65–84 D. Mitrovic, S. Klanke, S. Vijayakumar, Adaptive optimal feedback control with learned internal dynamics models, in From Motor Learning to Interaction Learning in Robots (2010), pp. 65–84
18.
Zurück zum Zitat K. Mombaur, Using optimization to create self-stable human-like running. Robotica 27(3):321330 (2009) K. Mombaur, Using optimization to create self-stable human-like running. Robotica 27(3):321330 (2009)
19.
Zurück zum Zitat J. Nakanishi, J.A. Farrell, S. Schaal, Composite adaptive control with locally weighted statistical learning. Neural Netw. 18(1), 71–90 (2005)CrossRefMATH J. Nakanishi, J.A. Farrell, S. Schaal, Composite adaptive control with locally weighted statistical learning. Neural Netw. 18(1), 71–90 (2005)CrossRefMATH
20.
Zurück zum Zitat J. Nakanishi, T. Fukuda, D. Koditschek, A brachiating robot controller. IEEE Trans. Robot. Autom. 16(2), 109–123 (2000)CrossRef J. Nakanishi, T. Fukuda, D. Koditschek, A brachiating robot controller. IEEE Trans. Robot. Autom. 16(2), 109–123 (2000)CrossRef
21.
Zurück zum Zitat J. Nakanishi, A. Radulescu, D. J. Braun, S. Vijayakumar, Spatio-temporal stiffness optimization with switching dynamics. Auton. Robot. 1–19 (2016) J. Nakanishi, A. Radulescu, D. J. Braun, S. Vijayakumar, Spatio-temporal stiffness optimization with switching dynamics. Auton. Robot. 1–19 (2016)
22.
Zurück zum Zitat J. Nakanishi, K. Rawlik, S. Vijayakumar, Stiffness and temporal optimization in periodic movements: an optimal control approach, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2011), pp. 718–724 J. Nakanishi, K. Rawlik, S. Vijayakumar, Stiffness and temporal optimization in periodic movements: an optimal control approach, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2011), pp. 718–724
23.
Zurück zum Zitat D. Nguyen-Tuong, J. Peters, Model learning for robot control: a survey. Cogn. Porocess. 12(4), 319–340 (2011)CrossRef D. Nguyen-Tuong, J. Peters, Model learning for robot control: a survey. Cogn. Porocess. 12(4), 319–340 (2011)CrossRef
24.
Zurück zum Zitat F. Petit, M. Chalon, W. Friedl, M. Grebenstein, A. Albu-Schäffer, G. Hirzinger, Bidirectional antagonistic variable stiffness actuation: analysis, design and implementation, in IEEE International Conference on Robotics and Automation (2010), pp. 4189–4196 F. Petit, M. Chalon, W. Friedl, M. Grebenstein, A. Albu-Schäffer, G. Hirzinger, Bidirectional antagonistic variable stiffness actuation: analysis, design and implementation, in IEEE International Conference on Robotics and Automation (2010), pp. 4189–4196
25.
Zurück zum Zitat B. Piccoli, Hybrid systems and optimal control, in IEEE Conference on Decision and Control (1998), pp. 13–18 B. Piccoli, Hybrid systems and optimal control, in IEEE Conference on Decision and Control (1998), pp. 13–18
26.
Zurück zum Zitat M. Posa, C. Cantu, R. Tedrake, A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)CrossRef M. Posa, C. Cantu, R. Tedrake, A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)CrossRef
27.
Zurück zum Zitat M. Posa, S. Kuindersma, R. Tedrake, Optimization and stabilization of trajectories for constrained dynamical systems, in IEEE International Conference on Robotics and Automation (2016), pp. 1366–1373 M. Posa, S. Kuindersma, R. Tedrake, Optimization and stabilization of trajectories for constrained dynamical systems, in IEEE International Conference on Robotics and Automation (2016), pp. 1366–1373
28.
Zurück zum Zitat A. Radulescu, M. Howard, D. J. Braun, S. Vijayakumar, Exploiting variable physical damping in rapid movement tasks, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2012), pp. 141–148 A. Radulescu, M. Howard, D. J. Braun, S. Vijayakumar, Exploiting variable physical damping in rapid movement tasks, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2012), pp. 141–148
29.
Zurück zum Zitat A. Radulescu, J. Nakanishi, S. Vijayakumar, Optimal control of multi-phase movements with learned dynamics, in Man–Machine Interactions 4 (Springer, Heidelberg, 2016), pp. 61–76 A. Radulescu, J. Nakanishi, S. Vijayakumar, Optimal control of multi-phase movements with learned dynamics, in Man–Machine Interactions 4 (Springer, Heidelberg, 2016), pp. 61–76
30.
Zurück zum Zitat K. Rawlik, M. Toussaint, S. Vijayakumar, An approximate inference approach to temporal optimization in optimal control, in Advances in Neural Information Processing Systems, vol. 23 (MIT Press, Cambridge, 2010), pp. 2011–2019 K. Rawlik, M. Toussaint, S. Vijayakumar, An approximate inference approach to temporal optimization in optimal control, in Advances in Neural Information Processing Systems, vol. 23 (MIT Press, Cambridge, 2010), pp. 2011–2019
31.
Zurück zum Zitat N. Rosa Jr., A. Barber, R.D. Gregg, K.M. Lynch, Stable open-loop brachiation on a vertical wall, in IEEE International Conference on Robotics and Automation (2012), pp. 1193–1199 N. Rosa Jr., A. Barber, R.D. Gregg, K.M. Lynch, Stable open-loop brachiation on a vertical wall, in IEEE International Conference on Robotics and Automation (2012), pp. 1193–1199
32.
Zurück zum Zitat F. Saito, T. Fukuda, F. Arai, Swing and locomotion control for a two-link brachiation robot. IEEE Control Syst. Mag. 14(1), 5–12 (1994)CrossRef F. Saito, T. Fukuda, F. Arai, Swing and locomotion control for a two-link brachiation robot. IEEE Control Syst. Mag. 14(1), 5–12 (1994)CrossRef
33.
Zurück zum Zitat S. Schaal, C.G. Atkeson, Constructive incremental learning from only local information. Neural Comput. 10(8), 2047–2084 (1998)CrossRef S. Schaal, C.G. Atkeson, Constructive incremental learning from only local information. Neural Comput. 10(8), 2047–2084 (1998)CrossRef
34.
Zurück zum Zitat M.S. Shaikh, P.E. Caines, On the hybrid optimal control problem: theory and algorithms. IEEE Trans. Autom. Control 52(9), 1587–1603 (2007)MathSciNetCrossRef M.S. Shaikh, P.E. Caines, On the hybrid optimal control problem: theory and algorithms. IEEE Trans. Autom. Control 52(9), 1587–1603 (2007)MathSciNetCrossRef
35.
Zurück zum Zitat B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, Heidelberg, 2008) B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, Heidelberg, 2008)
36.
Zurück zum Zitat O. Sigaud, C. Salaün, V. Padois, On-line regression algorithms for learning mechanical models of robots: a survey. Robot. Auton. Syst. 59, 1115–1129 (2011)CrossRef O. Sigaud, C. Salaün, V. Padois, On-line regression algorithms for learning mechanical models of robots: a survey. Robot. Auton. Syst. 59, 1115–1129 (2011)CrossRef
37.
Zurück zum Zitat Y. Tassa, T. Erez, E. Todorov, Synthesis and stabilization of complex behaviors through online trajectory optimization, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 2144–2151 Y. Tassa, T. Erez, E. Todorov, Synthesis and stabilization of complex behaviors through online trajectory optimization, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 2144–2151
38.
Zurück zum Zitat M. Van Damme, B. Vanderborght, B. Verrelst, R. Van Ham, F. Daerden, D. Lefeber, Proxy-based sliding mode control of a planar pneumatic manipulator. Int. J. Robot. Res. 28(2), 266–284 (2009)CrossRef M. Van Damme, B. Vanderborght, B. Verrelst, R. Van Ham, F. Daerden, D. Lefeber, Proxy-based sliding mode control of a planar pneumatic manipulator. Int. J. Robot. Res. 28(2), 266–284 (2009)CrossRef
39.
Zurück zum Zitat R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, D. Lefeber, MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)CrossRef R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, D. Lefeber, MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)CrossRef
40.
Zurück zum Zitat B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, D. Lefeber, B.M.Y. Duran, P. Beyl, Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. Int. J. Robot. Res. 25(4), 343–358 (2006)CrossRef B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, D. Lefeber, B.M.Y. Duran, P. Beyl, Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. Int. J. Robot. Res. 25(4), 343–358 (2006)CrossRef
41.
Zurück zum Zitat S. Vijayakumar, S. Schaal, Locally weighted projection regression: An o (n) algorithm for incremental real time learning in high dimensional space, in International Conference on Machine Learning, Proceedings of the Sixteenth Conference (2000) S. Vijayakumar, S. Schaal, Locally weighted projection regression: An o (n) algorithm for incremental real time learning in high dimensional space, in International Conference on Machine Learning, Proceedings of the Sixteenth Conference (2000)
42.
Zurück zum Zitat L.C. Visser, R. Carloni, S. Stramigioli, Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)CrossRef L.C. Visser, R. Carloni, S. Stramigioli, Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)CrossRef
43.
Zurück zum Zitat W. Xi, C.D. Remy, Optimal gaits and motions for legged robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 3259–3265 W. Xi, C.D. Remy, Optimal gaits and motions for legged robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 3259–3265
44.
Zurück zum Zitat X. Xu, P.J. Antsaklis, Quadratic optimal control problems for hybrid linear autonomous systems with state jumps, in American Control Conference (2003), pp. 3393–3398 X. Xu, P.J. Antsaklis, Quadratic optimal control problems for hybrid linear autonomous systems with state jumps, in American Control Conference (2003), pp. 3393–3398
45.
Zurück zum Zitat X. Xu, P.J. Antsaklis, Results and perspectives on computational methods for optimal control of switched systems, in International Workshop on Hybrid Systems: Computation and Control (Springer, Heidelberg, 2003), pp. 540–555 X. Xu, P.J. Antsaklis, Results and perspectives on computational methods for optimal control of switched systems, in International Workshop on Hybrid Systems: Computation and Control (Springer, Heidelberg, 2003), pp. 540–555
46.
Zurück zum Zitat X. Xu, P.J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Autom. Control 49(1), 2–16 (2004)MathSciNetCrossRef X. Xu, P.J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Autom. Control 49(1), 2–16 (2004)MathSciNetCrossRef
47.
Zurück zum Zitat C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schäeffer, E. Burdet, Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)CrossRef C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schäeffer, E. Burdet, Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)CrossRef
Metadaten
Titel
Optimal Control of Variable Stiffness Policies: Dealing with Switching Dynamics and Model Mismatch
verfasst von
Andreea Radulescu
Jun Nakanishi
David J. Braun
Sethu Vijayakumar
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51547-2_16

Neuer Inhalt