2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Discrete or continuous size optimization of large-scale, high-rise, or complex structures leads to problems with large number of design variables and large search space and requires the control of a great number of design constraints. Separate design decisions for each variable would be allowed. Thus, the optimizer invoked to process such a sizing problem is given the possibility to really optimize the objective function by detecting the optimum solution within a vast amount of possible design options. The huge number of available design options typically confuses an optimizer and radically decreases the potential of effective search for a high-quality solution. This chapter is based on the recent development on design of large-scale frame structures (Kaveh and Bolandgerami [1]).
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Kaveh A, Bolandgerami A (2016) Optimal design of large scale space steel frames using cascade enhanced colliding body optimization. Struct Multidiscip Optim. 10.1007/s00158-016-1494-2 Kaveh A, Bolandgerami A (2016) Optimal design of large scale space steel frames using cascade enhanced colliding body optimization. Struct Multidiscip Optim.
10.1007/s00158-016-1494-2
2.
Zurück zum Zitat Schulz V, Book HG (1997) Partially reduced sqp methods for large-scale nonlinear optimization problems. Nonlinear Anal Theory Methods Appl 30:4723–4734 MathSciNetCrossRefMATH Schulz V, Book HG (1997) Partially reduced sqp methods for large-scale nonlinear optimization problems. Nonlinear Anal Theory Methods Appl 30:4723–4734
MathSciNetCrossRefMATH
3.
Zurück zum Zitat Dreyer T, Maar B, Schulz V (2000) Multigrid optimization in applications. J Comput Appl Math 120:67–84 MathSciNetCrossRefMATH Dreyer T, Maar B, Schulz V (2000) Multigrid optimization in applications. J Comput Appl Math 120:67–84
MathSciNetCrossRefMATH
4.
Zurück zum Zitat Wang Q, Arora JS (2007) Optimization of large-scale truss structures using sparse SAND formulations. Int J Numer Methods Eng 69:390–407 CrossRefMATH Wang Q, Arora JS (2007) Optimization of large-scale truss structures using sparse SAND formulations. Int J Numer Methods Eng 69:390–407
CrossRefMATH
5.
Zurück zum Zitat Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178:2985–2999 MathSciNetCrossRefMATH Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178:2985–2999
MathSciNetCrossRefMATH
6.
Zurück zum Zitat Hsieh S-T, Sun T-Y, Liu C-C, Tsai S-J (2008) Solving large scale global optimization using improved particle swarm optimizer. In: Evolutionary computation, 2008. CEC 2008, IEEE World Congress on Computational Intelligence, pp 1777–1784 Hsieh S-T, Sun T-Y, Liu C-C, Tsai S-J (2008) Solving large scale global optimization using improved particle swarm optimizer. In: Evolutionary computation, 2008. CEC 2008, IEEE World Congress on Computational Intelligence, pp 1777–1784
7.
Zurück zum Zitat Fister I, Fister Jr I, Zumer JB (2012) Memetic artificial bee colony algorithm for large-scale global optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp 1–8 Fister I, Fister Jr I, Zumer JB (2012) Memetic artificial bee colony algorithm for large-scale global optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp 1–8
8.
Zurück zum Zitat Singh D, Agrawal S (2016) Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems. Appl Soft Comput 38:1040–1048 CrossRef Singh D, Agrawal S (2016) Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems. Appl Soft Comput 38:1040–1048
CrossRef
9.
Zurück zum Zitat Kaveh A, Talatahari S (2011) Optimization of large-scale truss structures using charged system search. Int J Optim Civ Eng 1(1):15–28 Kaveh A, Talatahari S (2011) Optimization of large-scale truss structures using charged system search. Int J Optim Civ Eng 1(1):15–28
10.
Zurück zum Zitat Lagaros ND (2013) A general purpose real-world structural design optimization computing platform. Struct Multidiscip Optim 49:1047–1066 CrossRef Lagaros ND (2013) A general purpose real-world structural design optimization computing platform. Struct Multidiscip Optim 49:1047–1066
CrossRef
11.
Zurück zum Zitat Talatahari S, Kaveh A (2015) Improved Bat Algorithm for Optimum Design of Large-Scale Truss Structures. Int J Optim Civil Eng 5:241–254 Talatahari S, Kaveh A (2015) Improved Bat Algorithm for Optimum Design of Large-Scale Truss Structures. Int J Optim Civil Eng 5:241–254
12.
Zurück zum Zitat Aydoğdu İ, Akın A, Saka MP (2016) Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution. Adv Eng Softw 92:1–14 CrossRef Aydoğdu İ, Akın A, Saka MP (2016) Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution. Adv Eng Softw 92:1–14
CrossRef
13.
Zurück zum Zitat Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural optimization using evolution strategies and neural networks. Comput Methods Appl Mech Eng 156:309–333 CrossRefMATH Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural optimization using evolution strategies and neural networks. Comput Methods Appl Mech Eng 156:309–333
CrossRefMATH
14.
Zurück zum Zitat Sobieszczanski-Sobieski J, James BB, Dovi AR (1985) Structural optimization by multilevel decomposition. AIAA J 23:1775–1782 MathSciNetCrossRefMATH Sobieszczanski-Sobieski J, James BB, Dovi AR (1985) Structural optimization by multilevel decomposition. AIAA J 23:1775–1782
MathSciNetCrossRefMATH
15.
Zurück zum Zitat Sobieszczanski-Sobieski J, James BB, Riley MF (1987) Structural sizing by generalized, multilevel optimization. AIAA J 25:139–145 CrossRef Sobieszczanski-Sobieski J, James BB, Riley MF (1987) Structural sizing by generalized, multilevel optimization. AIAA J 25:139–145
CrossRef
16.
Zurück zum Zitat Charmpis DC, Lagaros ND, Papadrakakis M (2005) Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization. Comput Methods Appl Mech Eng 194:3315–3330 CrossRefMATH Charmpis DC, Lagaros ND, Papadrakakis M (2005) Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization. Comput Methods Appl Mech Eng 194:3315–3330
CrossRefMATH
17.
Zurück zum Zitat Kaveh A, Ilchi Ghazaan M (2015) Optimal design of dome truss structures with dynamic frequency constraints. Struct Multidiscip Optim. 10.1007/s00158-015-1357-2 Kaveh A, Ilchi Ghazaan M (2015) Optimal design of dome truss structures with dynamic frequency constraints. Struct Multidiscip Optim.
10.1007/s00158-015-1357-2
18.
Zurück zum Zitat Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75 CrossRef Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75
CrossRef
19.
Zurück zum Zitat Kaveh A, Mahdavi VR (2014) Colliding Bodies Optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12 CrossRef Kaveh A, Mahdavi VR (2014) Colliding Bodies Optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12
CrossRef
20.
Zurück zum Zitat American Institute of Steel Construction (1989) Manual of steel construction: allowable stress design. American Institute of Steel Construction American Institute of Steel Construction (1989) Manual of steel construction: allowable stress design. American Institute of Steel Construction
21.
Zurück zum Zitat Dumonteil P (1992) Simple equations for effective length factors. Eng J AISC 29(3):111–115 Dumonteil P (1992) Simple equations for effective length factors. Eng J AISC 29(3):111–115
22.
Zurück zum Zitat Hellesland J (1996) Improved frame stability analysis with effective lengths. J Struct Eng 122(11):1275–1283 CrossRef Hellesland J (1996) Improved frame stability analysis with effective lengths. J Struct Eng 122(11):1275–1283
CrossRef
23.
Zurück zum Zitat Specification A (2005) Specification for structural steel buildings. ANSI/AISC Specification A (2005) Specification for structural steel buildings. ANSI/AISC
24.
Zurück zum Zitat Patnik SN, Coroneos RM, Hopkins DA (1997) A cascade optimization strategy for solution of difficult design problems. Int J Numer Methods Eng 40:2257–2266 CrossRefMATH Patnik SN, Coroneos RM, Hopkins DA (1997) A cascade optimization strategy for solution of difficult design problems. Int J Numer Methods Eng 40:2257–2266
CrossRefMATH
25.
Zurück zum Zitat The MathWorks (2013) MATLAB, Natick, Massachusetts, USA The MathWorks (2013) MATLAB, Natick, Massachusetts, USA
26.
Zurück zum Zitat Mazzoni S, McKenna F, Scott M (2006) OpenSees command language manual Mazzoni S, McKenna F, Scott M (2006) OpenSees command language manual
27.
Zurück zum Zitat Saka MP, Hasancebi O (2009) Adaptive harmony search algorithm for design code optimization of steel structures. Springer, Berlin CrossRef Saka MP, Hasancebi O (2009) Adaptive harmony search algorithm for design code optimization of steel structures. Springer, Berlin
CrossRef
28.
Zurück zum Zitat Sarma KC, Adeli H (2002) Life-cycle cost optimization of steel structures. Int J Numer Methods Eng 55:1451–1462 CrossRefMATH Sarma KC, Adeli H (2002) Life-cycle cost optimization of steel structures. Int J Numer Methods Eng 55:1451–1462
CrossRefMATH
- Titel
- Optimal Design of Large-Scale Frame Structures
- DOI
- https://doi.org/10.1007/978-3-319-46173-1_19
- Autor:
-
A. Kaveh
- Sequenznummer
- 19
- Kapitelnummer
- Chapter 19