Skip to main content

14.03.2025 | Original Paper

Optimal generation and distribution planning in smart microgrids under conditions of multi-microgrid disconnection using a hierarchical control strategy

verfasst von: Mehdi Zareian Jahromi, Elnaz Yaghoubi, Elaheh Yaghoubi

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In today's energy landscape, centralized and hierarchical control systems within various segments of microgrids offer significant advantages. These include enhanced overall efficiency, improved network stability, the potential for optimal control strategies at both national and regional levels, the ability to remotely operate equipment such as power switches, and the identification of system vulnerabilities. In light of these benefits, this paper introduces a novel energy management framework for an integrated power distribution network (DN) and its associated microgrids. The framework is designed to operate effectively under both predictable and unpredictable microgrid outages, aiming to reduce operational costs and increase microgrid reliability. In the first operational phase, the proposed framework (PF) manages the connection switches between microgrids and the main upstream network. This management allows the microgrids to switch between island mode and grid-connected mode, thereby controlling energy flow within the integrated power network and managing the generation units. In the second operational phase, the hierarchical control system addresses unexpected disturbances, such as cyber-physical attacks on the microgrid connection switches that may isolate a microgrid from the main network. This phase involves unique challenges, such as selecting the most appropriate generation unit as the V/f bus when the microgrid transitions to island mode. This selection is crucial to optimize operational costs and other technical aspects, distinguishing the proposed methodology from previous research. The simulation results demonstrate the effectiveness of the proposed framework in reducing the mean total operation cost by approximately 12.1%, the mean total losses by about 73.8%, and the mean voltage deviation by around 30.45% across various scenarios of microgrid outages and fully connected microgrids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mahmud K, Khan B, Ravishankar J, Ahmadi A, Siano P (2020) An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: an overview. Renew Sustain Energy Rev 127:109840CrossRef Mahmud K, Khan B, Ravishankar J, Ahmadi A, Siano P (2020) An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: an overview. Renew Sustain Energy Rev 127:109840CrossRef
2.
Zurück zum Zitat Bajaj M, Singh AK (2020) Grid integrated renewable DG systems: a review of power quality challenges and state-of-the-art mitigation techniques. Int J Energy Res 44(1):26–69MATHCrossRef Bajaj M, Singh AK (2020) Grid integrated renewable DG systems: a review of power quality challenges and state-of-the-art mitigation techniques. Int J Energy Res 44(1):26–69MATHCrossRef
3.
Zurück zum Zitat Ardeshiri A, Lotfi A, Behkam R, Moradzadeh A, Barzkar A (2021) Introduction and literature review of power system challenges and issues. Application of Machine Learning and Deep Learning Methods to Power System Problems. Springer, Cham, pp 19–43CrossRef Ardeshiri A, Lotfi A, Behkam R, Moradzadeh A, Barzkar A (2021) Introduction and literature review of power system challenges and issues. Application of Machine Learning and Deep Learning Methods to Power System Problems. Springer, Cham, pp 19–43CrossRef
4.
Zurück zum Zitat Wazirali R, Yaghoubi E, Abujazar MSS, Ahmad R, Vakili AH (2023) State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Electr Power Syst Res 225:109792CrossRef Wazirali R, Yaghoubi E, Abujazar MSS, Ahmad R, Vakili AH (2023) State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Electr Power Syst Res 225:109792CrossRef
5.
Zurück zum Zitat Lotfi H, Shojaei AA (2022) A dynamic model for multi-objective feeder reconfiguration in distribution network considering demand response program. Energy Syst 14:1–30MATH Lotfi H, Shojaei AA (2022) A dynamic model for multi-objective feeder reconfiguration in distribution network considering demand response program. Energy Syst 14:1–30MATH
6.
Zurück zum Zitat Pajares A, Vivas FJ, Blasco X, Herrero JM, Segura F, Andújar JM (2023) Methodology for energy management strategies design based on predictive control techniques for smart grids. Appl Energy 351:121809MATHCrossRef Pajares A, Vivas FJ, Blasco X, Herrero JM, Segura F, Andújar JM (2023) Methodology for energy management strategies design based on predictive control techniques for smart grids. Appl Energy 351:121809MATHCrossRef
7.
Zurück zum Zitat Maulik A (2022) Probabilistic power management of a grid-connected microgrid considering electric vehicles, demand response, smart transformers, and soft open points. Sustain Energy, Grids Networks 30:100636MATHCrossRef Maulik A (2022) Probabilistic power management of a grid-connected microgrid considering electric vehicles, demand response, smart transformers, and soft open points. Sustain Energy, Grids Networks 30:100636MATHCrossRef
8.
Zurück zum Zitat Yaghoubi E, Yaghoubi E, Khamees A, Razmi D, Lu T (2024) A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior. Eng Appl Artif Intell 135:108789MATHCrossRef Yaghoubi E, Yaghoubi E, Khamees A, Razmi D, Lu T (2024) A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior. Eng Appl Artif Intell 135:108789MATHCrossRef
10.
Zurück zum Zitat Hjelmeland M, Nøland JK, Backe S, Korpås M (2025) The role of nuclear energy and baseload demand in capacity expansion planning for low-carbon power systems. Appl Energy 377:124366CrossRef Hjelmeland M, Nøland JK, Backe S, Korpås M (2025) The role of nuclear energy and baseload demand in capacity expansion planning for low-carbon power systems. Appl Energy 377:124366CrossRef
11.
Zurück zum Zitat Jiang J et al (2022) Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid. Appl Energy 307:118214CrossRef Jiang J et al (2022) Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid. Appl Energy 307:118214CrossRef
12.
Zurück zum Zitat Keivanimehr M, Chamorro HR, Zareian-Jahromi M, Segundo-Sevilla FR, Guerrero JM, and Konstantinou C (2021) Load shedding frequency management of microgrids using hierarchical fuzzy control. In: 2021 World Automation Congress (WAC), pp. 216–221 Keivanimehr M, Chamorro HR, Zareian-Jahromi M, Segundo-Sevilla FR, Guerrero JM, and Konstantinou C (2021) Load shedding frequency management of microgrids using hierarchical fuzzy control. In: 2021 World Automation Congress (WAC), pp. 216–221
13.
Zurück zum Zitat Hossain S et al (2023) Grid-vehicle-grid (G2V2G) efficient power transmission: an overview of concept, operations, benefits, concerns, and future challenges. Sustainability 15(7):5782MATHCrossRef Hossain S et al (2023) Grid-vehicle-grid (G2V2G) efficient power transmission: an overview of concept, operations, benefits, concerns, and future challenges. Sustainability 15(7):5782MATHCrossRef
14.
Zurück zum Zitat Rosales-Asensio E, Diez DB, Sarmento P (2024) Electricity balancing challenges for markets with high variable renewable generation. Renew Sustain Energy Rev 189:113918CrossRef Rosales-Asensio E, Diez DB, Sarmento P (2024) Electricity balancing challenges for markets with high variable renewable generation. Renew Sustain Energy Rev 189:113918CrossRef
15.
Zurück zum Zitat Ahmad T, Madonski R, Zhang D, Huang C, Mujeeb A (2022) Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renew Sustain Energy Rev 160:112128MATHCrossRef Ahmad T, Madonski R, Zhang D, Huang C, Mujeeb A (2022) Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renew Sustain Energy Rev 160:112128MATHCrossRef
16.
Zurück zum Zitat Maghami MR, Pasupuleti J, Sundaram S (2024) Impact of time of use program on widely distribution generation interconnection in urban power network. J Energy Storage 101:113789MATHCrossRef Maghami MR, Pasupuleti J, Sundaram S (2024) Impact of time of use program on widely distribution generation interconnection in urban power network. J Energy Storage 101:113789MATHCrossRef
17.
Zurück zum Zitat Huang Z, Jin G (2024) Navigating urban day-ahead energy management considering climate change toward using IoT enabled machine learning technique: Toward future sustainable urban. Sustain Cities Soc 101:105162CrossRef Huang Z, Jin G (2024) Navigating urban day-ahead energy management considering climate change toward using IoT enabled machine learning technique: Toward future sustainable urban. Sustain Cities Soc 101:105162CrossRef
18.
Zurück zum Zitat Guo Y, Lin Y, and Sun M, (2011) “The impact of integrating distributed generations on the losses in the smart grid,” In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–6. Guo Y, Lin Y, and Sun M, (2011) “The impact of integrating distributed generations on the losses in the smart grid,” In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–6.
19.
Zurück zum Zitat Jauch ET (2010) Possible effects of smart grid functions on LTC transformers. IEEE Trans Ind Appl 47(2):1013–1021MATHCrossRef Jauch ET (2010) Possible effects of smart grid functions on LTC transformers. IEEE Trans Ind Appl 47(2):1013–1021MATHCrossRef
20.
Zurück zum Zitat Kou W, Park S-Y (2021) Distributed demand-side management for microgrids in modern power system. Uncertainties in Modern Power Systems. Elsevier, pp 163–194MATHCrossRef Kou W, Park S-Y (2021) Distributed demand-side management for microgrids in modern power system. Uncertainties in Modern Power Systems. Elsevier, pp 163–194MATHCrossRef
21.
Zurück zum Zitat ZareianJahromi M, Tajdinian M, Zhao J, Dehghanian P, Allahbakhsi M, Seifi AR (2020) Enhanced sensitivity-based decentralised framework for real-time transient stability assessment in bulk power grids with renewable energy resources. IET Gener Transm Distrib 14(4):665–674CrossRef ZareianJahromi M, Tajdinian M, Zhao J, Dehghanian P, Allahbakhsi M, Seifi AR (2020) Enhanced sensitivity-based decentralised framework for real-time transient stability assessment in bulk power grids with renewable energy resources. IET Gener Transm Distrib 14(4):665–674CrossRef
22.
Zurück zum Zitat Maghami MR, Pasupuleti J, Ekanayake J (2024) Energy storage and demand response as hybrid mitigation technique for photovoltaic grid connection: challenges and future trends. J Energy Storage 88:111680CrossRef Maghami MR, Pasupuleti J, Ekanayake J (2024) Energy storage and demand response as hybrid mitigation technique for photovoltaic grid connection: challenges and future trends. J Energy Storage 88:111680CrossRef
23.
Zurück zum Zitat Nikmehr N (2020) Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy 199:117440MATHCrossRef Nikmehr N (2020) Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy 199:117440MATHCrossRef
24.
Zurück zum Zitat Yang Y, Pei W, Huo Q, Sun J, Xu F (2018) Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection. Appl Energy 228:2361–2374MATHCrossRef Yang Y, Pei W, Huo Q, Sun J, Xu F (2018) Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection. Appl Energy 228:2361–2374MATHCrossRef
25.
Zurück zum Zitat Kong X, Liu D, Wang C, Sun F, Li S (2020) Optimal operation strategy for interconnected microgrids in market environment considering uncertainty. Appl Energy 275:115336CrossRef Kong X, Liu D, Wang C, Sun F, Li S (2020) Optimal operation strategy for interconnected microgrids in market environment considering uncertainty. Appl Energy 275:115336CrossRef
26.
Zurück zum Zitat Chen C, Duan S, Cai T, Liu B, Hu G (2011) Smart energy management system for optimal microgrid economic operation. IET Renew power Gener 5(3):258–267MATHCrossRef Chen C, Duan S, Cai T, Liu B, Hu G (2011) Smart energy management system for optimal microgrid economic operation. IET Renew power Gener 5(3):258–267MATHCrossRef
27.
Zurück zum Zitat Jahromi MZ, Yaghoubi E, Yaghoubi E, Maghami MR, Chamorro HR (2025) An innovative real-time recursive framework for techno-economical self-healing in large power microgrids against cyber-physical attacks using large change sensitivity analysis. Energies 18(1):190MATHCrossRef Jahromi MZ, Yaghoubi E, Yaghoubi E, Maghami MR, Chamorro HR (2025) An innovative real-time recursive framework for techno-economical self-healing in large power microgrids against cyber-physical attacks using large change sensitivity analysis. Energies 18(1):190MATHCrossRef
28.
Zurück zum Zitat Šehić F, Konjić T, Ćalasan M, and Rakočević S, (2025) A new approach for optimal allocation and sizing a distributive energy source or a parallel compensation device in radial distribution networks,” Electr Eng pp. 1–18 Šehić F, Konjić T, Ćalasan M, and Rakočević S, (2025) A new approach for optimal allocation and sizing a distributive energy source or a parallel compensation device in radial distribution networks,” Electr Eng pp. 1–18
29.
Zurück zum Zitat El-Meligy MA, Sharaf M, Alnowibet KA, and Abdelgawad AE, (2025) A second-order cone programming-based microgrid bidding strategy considering real-time market price correlation,” Electr Eng pp. 1–14 El-Meligy MA, Sharaf M, Alnowibet KA, and Abdelgawad AE, (2025) A second-order cone programming-based microgrid bidding strategy considering real-time market price correlation,” Electr Eng pp. 1–14
30.
Zurück zum Zitat Niknam T, Azizipanah-Abarghooee R, Narimani MR (2012) An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Appl Energy 99:455–470MATHCrossRef Niknam T, Azizipanah-Abarghooee R, Narimani MR (2012) An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Appl Energy 99:455–470MATHCrossRef
31.
Zurück zum Zitat Taghikhani MA, Khamseh J (2022) Multi-objective optimal energy management of storage system and distributed generations via water cycle algorithm concerning renewable resources uncertainties and pollution reduction. J Energy Storage 52:104756MATHCrossRef Taghikhani MA, Khamseh J (2022) Multi-objective optimal energy management of storage system and distributed generations via water cycle algorithm concerning renewable resources uncertainties and pollution reduction. J Energy Storage 52:104756MATHCrossRef
32.
Zurück zum Zitat Lorestani A, Ardehali MM (2018) Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm. Renew Energy 119:490–503MATHCrossRef Lorestani A, Ardehali MM (2018) Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm. Renew Energy 119:490–503MATHCrossRef
33.
Zurück zum Zitat Lamari M, Amrane Y, Boudour M, Boussahoua B (2022) Multi-objective economic/emission optimal energy management system for scheduling micro-grid integrated virtual power plant. Energy Sci Eng 10(8):3057–3074CrossRef Lamari M, Amrane Y, Boudour M, Boussahoua B (2022) Multi-objective economic/emission optimal energy management system for scheduling micro-grid integrated virtual power plant. Energy Sci Eng 10(8):3057–3074CrossRef
34.
Zurück zum Zitat Bornapour M, Hooshmand R-A, Khodabakhshian A, Parastegari M (2017) Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement. Energy Convers Manag 150:725–741CrossRef Bornapour M, Hooshmand R-A, Khodabakhshian A, Parastegari M (2017) Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement. Energy Convers Manag 150:725–741CrossRef
35.
Zurück zum Zitat Bornapour M, Hooshmand R-A, Parastegari M (2019) An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids. Renew energy 130:1049–1066CrossRef Bornapour M, Hooshmand R-A, Parastegari M (2019) An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids. Renew energy 130:1049–1066CrossRef
36.
Zurück zum Zitat Maleki A, Hafeznia H, Rosen MA, Pourfayaz F (2017) Optimization of a grid-connected hybrid solar-wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches. Appl Therm Eng 123:1263–1277CrossRef Maleki A, Hafeznia H, Rosen MA, Pourfayaz F (2017) Optimization of a grid-connected hybrid solar-wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches. Appl Therm Eng 123:1263–1277CrossRef
37.
Zurück zum Zitat Yi Z, Dong W, Etemadi AH (2017) A unified control and power management scheme for PV-battery-based hybrid microgrids for both grid-connected and islanded modes. IEEE Trans Smart Grid 9(6):5975–5985MATHCrossRef Yi Z, Dong W, Etemadi AH (2017) A unified control and power management scheme for PV-battery-based hybrid microgrids for both grid-connected and islanded modes. IEEE Trans Smart Grid 9(6):5975–5985MATHCrossRef
38.
Zurück zum Zitat Moradi S, Tinajero GDA, Vasquez JC, Zizzo G, Guerrero JM, Sanseverino ER (2024) Hierarchical-power-flow-based energy management for alternative/direct current hybrid microgrids. Sustain Energy, Grids Networks 38:101384MATHCrossRef Moradi S, Tinajero GDA, Vasquez JC, Zizzo G, Guerrero JM, Sanseverino ER (2024) Hierarchical-power-flow-based energy management for alternative/direct current hybrid microgrids. Sustain Energy, Grids Networks 38:101384MATHCrossRef
39.
Zurück zum Zitat Guangqian D, Bekhrad K, Azarikhah P, Maleki A (2018) A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renew Energy 122:551–560CrossRef Guangqian D, Bekhrad K, Azarikhah P, Maleki A (2018) A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renew Energy 122:551–560CrossRef
40.
Zurück zum Zitat Gao J, Chen J-J, Cai Y, Zeng S-Q, Peng K (2020) A two-stage Microgrid cost optimization considering distribution network loss and voltage deviation. Energy Rep 6:263–267MATHCrossRef Gao J, Chen J-J, Cai Y, Zeng S-Q, Peng K (2020) A two-stage Microgrid cost optimization considering distribution network loss and voltage deviation. Energy Rep 6:263–267MATHCrossRef
41.
Zurück zum Zitat Roustaee M, Kazemi A (2021) Multi-objective energy management strategy of unbalanced multi-microgrids considering technical and economic situations. Sustain Energy Technol Assess 47:101448MATH Roustaee M, Kazemi A (2021) Multi-objective energy management strategy of unbalanced multi-microgrids considering technical and economic situations. Sustain Energy Technol Assess 47:101448MATH
42.
Zurück zum Zitat Misaghian MS, Saffari M, Kia M, Heidari A, Dehghanian P, and Wang B, (2018) Electric vehicles contributions to voltage improvement and loss reduction in microgrids,” In: 2018 North American Power Symposium (NAPS), pp. 1–6 Misaghian MS, Saffari M, Kia M, Heidari A, Dehghanian P, and Wang B, (2018) Electric vehicles contributions to voltage improvement and loss reduction in microgrids,” In: 2018 North American Power Symposium (NAPS), pp. 1–6
43.
Zurück zum Zitat Baziar A, Kavousi-Fard A (2013) Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices. Renew Energy 59:158–166MATHCrossRef Baziar A, Kavousi-Fard A (2013) Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices. Renew Energy 59:158–166MATHCrossRef
44.
Zurück zum Zitat Riffonneau Y, Bacha S, Barruel F, Ploix S (2011) Optimal power flow management for grid connected PV systems with batteries. IEEE Trans Sustain energy 2(3):309–320CrossRef Riffonneau Y, Bacha S, Barruel F, Ploix S (2011) Optimal power flow management for grid connected PV systems with batteries. IEEE Trans Sustain energy 2(3):309–320CrossRef
45.
Zurück zum Zitat Li Y, Janik P, Schwarz H (2024) Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation. Electr Eng 106(1):655–671MATHCrossRef Li Y, Janik P, Schwarz H (2024) Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation. Electr Eng 106(1):655–671MATHCrossRef
46.
Zurück zum Zitat Xiao Z, Zhao Q, Yang X, Zhu A (2020) A power performance online assessment method of a wind turbine based on the probabilistic area metric. Appl Sci 10(9):3268MATHCrossRef Xiao Z, Zhao Q, Yang X, Zhu A (2020) A power performance online assessment method of a wind turbine based on the probabilistic area metric. Appl Sci 10(9):3268MATHCrossRef
47.
Zurück zum Zitat Gen B (2005) Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy. University of Saskatchewan, 2005. Gen B (2005) Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy. University of Saskatchewan, 2005.
48.
Zurück zum Zitat Hannan MA et al (2021) Battery energy-storage system: a review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J Energy Storage 42:103023MATHCrossRef Hannan MA et al (2021) Battery energy-storage system: a review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J Energy Storage 42:103023MATHCrossRef
49.
Zurück zum Zitat Jannesar MR, Sedighi A, Savaghebi M, Guerrero JM (2018) Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Appl Energy 226:957–966CrossRef Jannesar MR, Sedighi A, Savaghebi M, Guerrero JM (2018) Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Appl Energy 226:957–966CrossRef
50.
51.
Zurück zum Zitat Al-Zaidi WKM, Inan A (2024) Optimal planning of battery swapping stations incorporating dynamic network reconfiguration considering technical aspects of the power grid. Appl Sci 14(9):3795MATHCrossRef Al-Zaidi WKM, Inan A (2024) Optimal planning of battery swapping stations incorporating dynamic network reconfiguration considering technical aspects of the power grid. Appl Sci 14(9):3795MATHCrossRef
Metadaten
Titel
Optimal generation and distribution planning in smart microgrids under conditions of multi-microgrid disconnection using a hierarchical control strategy
verfasst von
Mehdi Zareian Jahromi
Elnaz Yaghoubi
Elaheh Yaghoubi
Publikationsdatum
14.03.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-03036-4