Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.02.2016 | Methodologies and Application | Ausgabe 14/2017

Soft Computing 14/2017

Optimal layout and deployment for RFID system using a novel hybrid artificial bee colony optimizer based on bee life-cycle model

Zeitschrift:
Soft Computing > Ausgabe 14/2017
Autoren:
Shikai Jing, Xiaodan Lian, Hanning Chen, Tao Zou, Lianbo Ma
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Large-scale radio frequency identification (RFID) network planning (RNP) problem has been proven to be a NP-hard issue, which can be formulated as a high-dimensional nonlinear optimization problem with a mixture of discrete and continuous variables and uncertain parameters. First, a two-level optimization model for RFID network planning based on distributed decision making (DDM) is presented in this paper. In this model, the mixed discrete and continuous planning variables, namely the number, location, and radiate power of RFID readers are optimized. In each level of the optimization model, the different objectives to determine optimal values for these planning variables are as follows: (i) minimization of total installation cost of RFID network in the top-level; (ii) maximization of tag coverage and network reliability, and minimization of reader interference in the lower-level. In order to solve the proposed model effectively, this work proposes an efficient approach for RNP problem, namely the hybrid artificial bee colony optimizer (HABC), which employs the natural life-cycle mechanism to cast the original ABC framework to a cooperative and population varying fashion. In the proposed HABC, individuals can dynamically shift their survival states and population size varies dynamically according to the local fitness landscape during the executions of algorithm. These new characteristics of HABC help to avoid redundant search and maintain diversity of population in complex environments. Experiments are conducted on a set of CEC2005 and discrete benchmarks for evaluating the proposed algorithm. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 14/2017

Soft Computing 14/2017 Zur Ausgabe

Premium Partner

    Bildnachweise