Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

30.05.2021

Optimal Microwave Wireless Backhaul Link Design Using a Massive MIMO for 5G HetNet-Practical Deployment Scenario

verfasst von: P. Jeyakumar, E. Malar, S. Niveda, P. Muthuchidambaranathan

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The massive multiple-input–multiple-output that enhances energy efficiency and spectral efficiency is the primary technology for fifth generation wireless networks. A move toward heterogeneous elements such as microcells, femtocells, picocells as well as remote radio heads, characterised by physical measurements, backhauls, transmission and propagation, is now underway to ensure an economical transition to the cellular network infrastructure, that is far from expensive high power mounted base stations. This adaptation presents many obstacles to network operations and co-existence. The proposed work therefore provides a design for a 28 GHz microwave wireless backhaul link for small cell base stations (SBSs) as well as the number of antennas required for the base station (BS) to achieve a target backhaul rate of 10 Gbit/s within a given transmit power of 40 dBm. In this work a distributed beamforming algorithm is formulated in a multi-cell scenario using methods from random matrix theory, under the assumption that the system dimensions are large. The design purpose is to minimize the total transmit power over all BSs according to the constraints of the signal-to-interference-and-noise ratio (SINR) as beamformers are integrated in a distributed manner. The BSs may only need to share the channel statistics in the suggested algorithm, instead of the instant channel state information. The simulation results show that the proposed algorithm strongly satisfies the target SINR constraints as the number of SBSs per cell grows high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the metis project. IEEE Communications Magazine, 52(5), 26–35.CrossRef Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the metis project. IEEE Communications Magazine, 52(5), 26–35.CrossRef
2.
Zurück zum Zitat Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.CrossRef Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.CrossRef
3.
Zurück zum Zitat Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.CrossRef Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.CrossRef
4.
Zurück zum Zitat Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79.CrossRef Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79.CrossRef
5.
Zurück zum Zitat Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.CrossRef Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.CrossRef
6.
Zurück zum Zitat “Backhaul technologies for small cells,” small cell forum Rep. 049 03 01 (2013). “Backhaul technologies for small cells,” small cell forum Rep. 049 03 01 (2013).
7.
Zurück zum Zitat Jaber, M., Imran, M. A., Tafazolli, R., & Tukmanov, A. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.CrossRef Jaber, M., Imran, M. A., Tafazolli, R., & Tukmanov, A. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.CrossRef
8.
Zurück zum Zitat “Backhaul technologies for small cells: Use cases, requirements and solution,” small cell forum, Dursley, U.K., Tech. Rep. 049 01 01 (2013). “Backhaul technologies for small cells: Use cases, requirements and solution,” small cell forum, Dursley, U.K., Tech. Rep. 049 01 01 (2013).
9.
Zurück zum Zitat Robson, J. (2012). Small cell backhaul requirements, NGMN Alliance (2012). White Paper. Robson, J. (2012). Small cell backhaul requirements, NGMN Alliance (2012). White Paper.
10.
Zurück zum Zitat Zhang, J. A., Ni, W., Matthews, J., Sung, C.-K., Huang, X., Suzuki, H., & Collings, I. (2014). Low latency integrated point-to-multipoint and E-band point-to-point backhaul for mobile small cells. In 2014 IEEE international conference on communications workshops (ICC) (pp. 592–597). Zhang, J. A., Ni, W., Matthews, J., Sung, C.-K., Huang, X., Suzuki, H., & Collings, I. (2014). Low latency integrated point-to-multipoint and E-band point-to-point backhaul for mobile small cells. In 2014 IEEE international conference on communications workshops (ICC) (pp. 592–597).
11.
Zurück zum Zitat Kela, P., Costa, M., Turkka, J., Leppnen, K., & Jntti, R. (2016). Flexible backhauling with massive MIMO for ultra-dense networks. IEEE Access, 4, 9625–9634.CrossRef Kela, P., Costa, M., Turkka, J., Leppnen, K., & Jntti, R. (2016). Flexible backhauling with massive MIMO for ultra-dense networks. IEEE Access, 4, 9625–9634.CrossRef
12.
Zurück zum Zitat Li, B., Zhu, D., & Liang, P. (2015). Small cell in-band wireless backhaul in massive MIMO systems: A cooperation of next-generation techniques. IEEE Transactions on Wireless Communications, 14(12), 7057–7069.CrossRef Li, B., Zhu, D., & Liang, P. (2015). Small cell in-band wireless backhaul in massive MIMO systems: A cooperation of next-generation techniques. IEEE Transactions on Wireless Communications, 14(12), 7057–7069.CrossRef
13.
Zurück zum Zitat Tabassum, H., Sakr, A. H., & Hossain, E. (2016). Analysis of massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Transactions on Communications, 64(6), 2354–2369.CrossRef Tabassum, H., Sakr, A. H., & Hossain, E. (2016). Analysis of massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Transactions on Communications, 64(6), 2354–2369.CrossRef
14.
Zurück zum Zitat Coldrey, M., Koorapaty, H., Berg, J. E., Ghebretensa, Z., Hansryd, J., Derneryd, A., et al. (2012). IEEE vehicular technology conference (VTC Fall) (pp. 1–5). Coldrey, M., Koorapaty, H., Berg, J. E., Ghebretensa, Z., Hansryd, J., Derneryd, A., et al. (2012). IEEE vehicular technology conference (VTC Fall) (pp. 1–5).
15.
Zurück zum Zitat Coldrey, M., Berg, J. E., Manholm, L., Larsson, C., & Hansryd, J. (2013). Non-line-of sight small cell backhauling using microwave technology. IEEE Communications Magazine, 51(9), 78–84.CrossRef Coldrey, M., Berg, J. E., Manholm, L., Larsson, C., & Hansryd, J. (2013). Non-line-of sight small cell backhauling using microwave technology. IEEE Communications Magazine, 51(9), 78–84.CrossRef
16.
Zurück zum Zitat Ni, W., Collings, I. B., Wang, X., & Liu, R. P. (2014). Multi-hop point-to-point FDD wireless backhaul for mobile small cells. IEEE Wireless Communications, 21(4), 88–96.CrossRef Ni, W., Collings, I. B., Wang, X., & Liu, R. P. (2014). Multi-hop point-to-point FDD wireless backhaul for mobile small cells. IEEE Wireless Communications, 21(4), 88–96.CrossRef
17.
Zurück zum Zitat Bojic, D., Sasaki, E., Cvijetic, N., Wang, T., Kuno, J., Lessmann, J., et al. (2013). Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management. IEEE Communications Magazine, 51(9), 86–93.CrossRef Bojic, D., Sasaki, E., Cvijetic, N., Wang, T., Kuno, J., Lessmann, J., et al. (2013). Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management. IEEE Communications Magazine, 51(9), 86–93.CrossRef
18.
Zurück zum Zitat Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmWave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.CrossRef Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmWave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.CrossRef
19.
Zurück zum Zitat Semiari, O., Saad, W., Daw, Z., & Bennis, M. (2015). Matching theory for backhaul management in small cell networks with mmWave capabilities. In 2015 IEEE international conference on communications (ICC) (pp. 3460–3465.) Semiari, O., Saad, W., Daw, Z., & Bennis, M. (2015). Matching theory for backhaul management in small cell networks with mmWave capabilities. In 2015 IEEE international conference on communications (ICC) (pp. 3460–3465.)
20.
Zurück zum Zitat Demers, F., Yanikomeroglu, H., & St-Hilaire, M. (2011). A survey of opportunities for free space optics in next generation cellular networks. In 2011 Ninth annual communication networks and services research conference (pp. 210–216). Demers, F., Yanikomeroglu, H., & St-Hilaire, M. (2011). A survey of opportunities for free space optics in next generation cellular networks. In 2011 Ninth annual communication networks and services research conference (pp. 210–216).
21.
Zurück zum Zitat Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys Tutorials, 16(4), 2231–2258.CrossRef Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys Tutorials, 16(4), 2231–2258.CrossRef
22.
Zurück zum Zitat Douik, A., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Hybrid radio/freespace optical design for next generation backhaul systems. IEEE Transactions on Communications, 64(6), 2563–2577.CrossRef Douik, A., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Hybrid radio/freespace optical design for next generation backhaul systems. IEEE Transactions on Communications, 64(6), 2563–2577.CrossRef
23.
Zurück zum Zitat Curran, M., Rahman, M. S., Gupta, H., Kai Zheng, J. L., Das, S. R., & Mohamed, T. (2017). Fsonet: A wireless backhaul for multi-gigabit picocells using steerable free space optics. MobiCom. Curran, M., Rahman, M. S., Gupta, H., Kai Zheng, J. L., Das, S. R., & Mohamed, T. (2017). Fsonet: A wireless backhaul for multi-gigabit picocells using steerable free space optics. MobiCom.
25.
Zurück zum Zitat Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.CrossRef Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.CrossRef
26.
Zurück zum Zitat Lakshminaryana, S., Hoydis, J., Debbah, M., & Assaad, M. (2010). Asymptotic analysis of distributed multi-cell beamforming. In Proceedings of the IEEE PIMRC (pp. 2105–2110). IEEE. Lakshminaryana, S., Hoydis, J., Debbah, M., & Assaad, M. (2010). Asymptotic analysis of distributed multi-cell beamforming. In Proceedings of the IEEE PIMRC (pp. 2105–2110). IEEE.
27.
Zurück zum Zitat Li, X., Bjornson, E., Larsson, E. G., Zhou, S., & Wang, J. (2015). A multi-cell MMSE detector for massive MIMO systems and new large system analysis. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE. Li, X., Bjornson, E., Larsson, E. G., Zhou, S., & Wang, J. (2015). A multi-cell MMSE detector for massive MIMO systems and new large system analysis. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.
28.
Zurück zum Zitat Evolved Universal Terrestrial Radio Access (E-UTRA); Radio frequency (RF) system scenarios (Release 8). 2008. 3GPP TS 36.942. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio frequency (RF) system scenarios (Release 8). 2008. 3GPP TS 36.942.
29.
Zurück zum Zitat Feasibility study for further advancements for E-UTRA (Release 12). 2014. 3GPP TS 36.912. Feasibility study for further advancements for E-UTRA (Release 12). 2014. 3GPP TS 36.912.
30.
Zurück zum Zitat Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef
Metadaten
Titel
Optimal Microwave Wireless Backhaul Link Design Using a Massive MIMO for 5G HetNet-Practical Deployment Scenario
verfasst von
P. Jeyakumar
E. Malar
S. Niveda
P. Muthuchidambaranathan
Publikationsdatum
30.05.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08543-8

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt