Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.08.2017 | Original Research Paper | Ausgabe 1/2018

Intelligent Service Robotics 1/2018

Optimal path planning in cluttered environment using RRT*-AB

Zeitschrift:
Intelligent Service Robotics > Ausgabe 1/2018
Autoren:
Iram Noreen, Amna Khan, Hyejeong Ryu, Nakju Lett Doh, Zulfiqar Habib

Abstract

Rapidly exploring Random Tree Star (RRT*) has gained popularity due to its support for complex and high-dimensional problems. Its numerous applications in path planning have made it an active area of research. Although it ensures probabilistic completeness and asymptotic optimality, its slow convergence rate and large dense sampling space are proven problems. In this paper, an off-line planning algorithm based on RRT* named RRT*-adjustable bounds (RRT*-AB) is proposed to resolve these issues. The proposed approach rapidly targets the goal region with improved computational efficiency. Desired objectives are achieved through three novel strategies, i.e., connectivity region, goal-biased bounded sampling, and path optimization. Goal-biased bounded sampling is performed within boundary of connectivity region to find the initial path. Connectivity region is flexible enough to grow for complex environment. Once path is found, it is optimized gradually using node rejection and concentrated bounded sampling. Final path is further improved using global pruning to erode extra nodes. Robustness and efficiency of proposed algorithm is tested through experiments in different structured and unstructured environments cluttered with obstacles including narrow and complex maze cases. The proposed approach converges to shorter path with reduced time and memory requirements than conventional RRT* methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Intelligent Service Robotics 1/2018Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Effizienzsteigerung durch die und in der Magnetlagertechnik

Magnetlager sind aus etlichen industriellen Anwendungen nicht mehr wegzudenken, in anderen erscheint ein Einsatz in Zukunft vielversprechend. Durch die Magnetlagertechnik werden Effizienzsteigerungen unterschiedlicher Art ermöglicht – sowohl auf direkte Weise durch Verringerung der Lagerverluste im Vergleich zu mechanischen Lagerungen, als auch durch Verbesserungen im industriellen Prozess, die erst durch die besonderen Eigenschaften der Magnetlagerung erzielt werden können.
Jetzt gratis downloaden!

Bildnachweise