Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.08.2017 | Original Research Paper | Ausgabe 1/2018

Intelligent Service Robotics 1/2018

Optimal path planning in cluttered environment using RRT*-AB

Zeitschrift:
Intelligent Service Robotics > Ausgabe 1/2018
Autoren:
Iram Noreen, Amna Khan, Hyejeong Ryu, Nakju Lett Doh, Zulfiqar Habib

Abstract

Rapidly exploring Random Tree Star (RRT*) has gained popularity due to its support for complex and high-dimensional problems. Its numerous applications in path planning have made it an active area of research. Although it ensures probabilistic completeness and asymptotic optimality, its slow convergence rate and large dense sampling space are proven problems. In this paper, an off-line planning algorithm based on RRT* named RRT*-adjustable bounds (RRT*-AB) is proposed to resolve these issues. The proposed approach rapidly targets the goal region with improved computational efficiency. Desired objectives are achieved through three novel strategies, i.e., connectivity region, goal-biased bounded sampling, and path optimization. Goal-biased bounded sampling is performed within boundary of connectivity region to find the initial path. Connectivity region is flexible enough to grow for complex environment. Once path is found, it is optimized gradually using node rejection and concentrated bounded sampling. Final path is further improved using global pruning to erode extra nodes. Robustness and efficiency of proposed algorithm is tested through experiments in different structured and unstructured environments cluttered with obstacles including narrow and complex maze cases. The proposed approach converges to shorter path with reduced time and memory requirements than conventional RRT* methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Intelligent Service Robotics 1/2018 Zur Ausgabe