Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2017

10.11.2016 | RESEARCH PAPER

Optimal topology design for stress-isolation of soft hyperelastic composite structures under imposed boundary displacements

verfasst von: Yangjun Luo, Ming Li, Zhan Kang

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft hyperelastic composite structures that integrate soft hyperelastic material and linear elastic hard material can undergo large deformations while isolating high strain in specified locations to avoid failure. This paper presents an effective topology optimization-based methodology for seeking the optimal united layout of hyperelastic composite structures with prescribed boundary displacements and stress constraints. The optimization problem is modeled based on the power-law interpolation scheme for two candidate materials (one is soft hyperelastic material and the other is linear elastic material). The ɛ-relaxation technique and the enhanced aggregation method are employed to avoid stress singularity and improve the computational efficiency. Then, the topology optimization problem can be readily solved by a gradient-based mathematical programming algorithm using the adjoint variable sensitivity information. Numerical examples are given to show the importance of considering prescribed boundary displacements in the design of hyperelastic composite structures. Moreover, numerical solutions demonstrate the validity of the present model for the optimal topology design with a stress-isolated region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459CrossRefMATH
Zurück zum Zitat Cai K, Cao J, Shi J, Liu L, Qin Q (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53(4):801–811MathSciNetCrossRef Cai K, Cao J, Shi J, Liu L, Qin Q (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53(4):801–811MathSciNetCrossRef
Zurück zum Zitat Cheng G, Guo X (1997) ɛ-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266CrossRef Cheng G, Guo X (1997) ɛ-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266CrossRef
Zurück zum Zitat Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20:129–148CrossRef Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20:129–148CrossRef
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
Zurück zum Zitat Ghabraie K (2015) An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases. Struct Multidiscip Optim 52(4):773–790MathSciNetCrossRef Ghabraie K (2015) An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases. Struct Multidiscip Optim 52(4):773–790MathSciNetCrossRef
Zurück zum Zitat Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47–48):3439–3452MathSciNetCrossRefMATH Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47–48):3439–3452MathSciNetCrossRefMATH
Zurück zum Zitat Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidiscip Optim 46(5):631–645MathSciNetCrossRefMATH Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidiscip Optim 46(5):631–645MathSciNetCrossRefMATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268(1):632–655MathSciNetCrossRefMATH Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268(1):632–655MathSciNetCrossRefMATH
Zurück zum Zitat Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13–14):1447–1455CrossRef Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13–14):1447–1455CrossRef
Zurück zum Zitat Jung I, Shin G, Malyarchuk V, Ha JS, Rogers JA (2010) Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts. Appl Phys Lett 96:021110CrossRef Jung I, Shin G, Malyarchuk V, Ha JS, Rogers JA (2010) Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts. Appl Phys Lett 96:021110CrossRef
Zurück zum Zitat Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2:133–142CrossRef Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2:133–142CrossRef
Zurück zum Zitat Klarbring A, Strömberg N (2012) A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements. Struct Multidiscip Optim 45:147–149MathSciNetCrossRefMATH Klarbring A, Strömberg N (2012) A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements. Struct Multidiscip Optim 45:147–149MathSciNetCrossRefMATH
Zurück zum Zitat Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRefMATH Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48MathSciNetCrossRefMATH
Zurück zum Zitat Le C, Norato J, Bruns T, Ha C, Tortorelli D (2011) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef Le C, Norato J, Bruns T, Ha C, Tortorelli D (2011) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef
Zurück zum Zitat Lee WS, Youn SK (2004) Topology optimization of rubber isolators considering static and dynamic behaviours. Struct Multidiscip Optim 27(4):284–294CrossRef Lee WS, Youn SK (2004) Topology optimization of rubber isolators considering static and dynamic behaviours. Struct Multidiscip Optim 27(4):284–294CrossRef
Zurück zum Zitat Lee J, Wu J, Shi M, Yoon J, Park S, Li M, Liu Z, Huang Y, Rogers JA (2011) Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater 23:986–991CrossRef Lee J, Wu J, Shi M, Yoon J, Park S, Li M, Liu Z, Huang Y, Rogers JA (2011) Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater 23:986–991CrossRef
Zurück zum Zitat Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker-Prager yield stress constraints. Comput Struct 90–91:65–75CrossRef Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker-Prager yield stress constraints. Comput Struct 90–91:65–75CrossRef
Zurück zum Zitat Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41MathSciNetCrossRefMATH Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41MathSciNetCrossRefMATH
Zurück zum Zitat Luo Y, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81(3):373–382CrossRef Luo Y, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81(3):373–382CrossRef
Zurück zum Zitat Niu F, Xu S, Cheng G (2011) A general formulation of structural topology optimization for maximizing structural stiffness. Struct Multidiscip Optim 43:561–572CrossRef Niu F, Xu S, Cheng G (2011) A general formulation of structural topology optimization for maximizing structural stiffness. Struct Multidiscip Optim 43:561–572CrossRef
Zurück zum Zitat París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41:433–441CrossRefMATH París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41:433–441CrossRefMATH
Zurück zum Zitat Pedersen P, Pedersen NL (2011) Design objectives with non-zero prescribed support displacements. Struct Multidiscip Optim 43:205–214CrossRef Pedersen P, Pedersen NL (2011) Design objectives with non-zero prescribed support displacements. Struct Multidiscip Optim 43:205–214CrossRef
Zurück zum Zitat Ramani A (2010) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41(6):913–934CrossRef Ramani A (2010) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41(6):913–934CrossRef
Zurück zum Zitat Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8:494–499CrossRef Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8:494–499CrossRef
Zurück zum Zitat Shin G, Jung I, Malyarchuk V, Song J, Wang S, Ko HC, Huang Y, Ha JS, Rogers JA (2010) Micromechanics and advanced design for curved photodetector arrays in hemispherical electronic-eye cameras. Small 6(7):851–856CrossRef Shin G, Jung I, Malyarchuk V, Song J, Wang S, Ko HC, Huang Y, Ha JS, Rogers JA (2010) Micromechanics and advanced design for curved photodetector arrays in hemispherical electronic-eye cameras. Small 6(7):851–856CrossRef
Zurück zum Zitat Sigmund O (2001a) Design of multiphysics actuators using topology optimization - Part 2: Two-material structures. Comput Methods Appl Mech Eng 190(45–50):6605–6627CrossRef Sigmund O (2001a) Design of multiphysics actuators using topology optimization - Part 2: Two-material structures. Comput Methods Appl Mech Eng 190(45–50):6605–6627CrossRef
Zurück zum Zitat Sigmund O (2001b) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001b) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127CrossRef
Zurück zum Zitat Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes - A new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes - A new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH
Zurück zum Zitat Tavakoli R (2016) Optimal design of multiphase composites under elastodynamic loading. Comput Methods Appl Mech Eng 300:265–293MathSciNetCrossRef Tavakoli R (2016) Optimal design of multiphase composites under elastodynamic loading. Comput Methods Appl Mech Eng 300:265–293MathSciNetCrossRef
Zurück zum Zitat Wang MY, Wang X (2004) “Color” level sets: A multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496MathSciNetCrossRefMATH Wang MY, Wang X (2004) “Color” level sets: A multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496MathSciNetCrossRefMATH
Zurück zum Zitat Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283(1):1570–1586MathSciNetCrossRef Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283(1):1570–1586MathSciNetCrossRef
Zurück zum Zitat Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to stress-based structural shape and topology optimization. Comput Struct 90–91:55–64CrossRef Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to stress-based structural shape and topology optimization. Comput Struct 90–91:55–64CrossRef
Zurück zum Zitat Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef
Zurück zum Zitat Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009CrossRefMATH Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009CrossRefMATH
Zurück zum Zitat Zhang W, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(93):942–959MathSciNetCrossRefMATH Zhang W, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(93):942–959MathSciNetCrossRefMATH
Zurück zum Zitat Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111MathSciNetCrossRefMATH Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111MathSciNetCrossRefMATH
Metadaten
Titel
Optimal topology design for stress-isolation of soft hyperelastic composite structures under imposed boundary displacements
verfasst von
Yangjun Luo
Ming Li
Zhan Kang
Publikationsdatum
10.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1610-3

Weitere Artikel der Ausgabe 5/2017

Structural and Multidisciplinary Optimization 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.